Détail de l'auteur
Auteur Peter Steigenberger |
Documents disponibles écrits par cet auteur (14)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
On the relation of GNSS phase center offsets and the terrestrial reference frame scale: a semi-analytical analysis / Oliver Montenbruck in Journal of geodesy, vol 96 n° 11 (November 2022)
[article]
Titre : On the relation of GNSS phase center offsets and the terrestrial reference frame scale: a semi-analytical analysis Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Peter Steigenberger, Auteur ; Arturo Villiger, Auteur ; Paul Rebischung , Auteur Année de publication : 2022 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne GNSS
[Termes IGN] centre de phase
[Termes IGN] décalage d'horloge
[Termes IGN] hauteur (coordonnée)
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] orbitographie
[Termes IGN] phase
[Termes IGN] positionnement par GNSS
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GNSSRésumé : (auteur) Phase center offsets (PCOs) of global navigation satellites systems (GNSS) transmit antennas along the boresight axis introduce line-of-sight-dependent range changes in the modeling of GNSS observations that are strongly correlated with the estimated station heights. As a consequence, changes in the adopted PCOs impact the scale of GNSS-based realizations of the terrestrial reference frame (TRF). Vice versa, changes in the adopted TRF scale require corrections to the GNSS transmit antenna PCOs for consistent observation modeling. Early studies have determined an approximate value of α=−0.050 for the ratio of station height changes and satellite PCO changes in GPS orbit determination and phase center adjustment. However, this is mainly an empirical value and limited information is available on the actual PCO-scale relation and how it is influenced by other factors. In view of the recurring need to adjust the IGS antenna models to new ITRF scales, a semi-analytical model is developed to determine values of α for the four current GNSSs from first principles without a need for actual network data processing. Given the close coupling of satellite boresight angle and station zenith angle, satellite PCO changes are essentially compensated by a combination of station height, zenith troposphere delay, and receiver clock offset. As such, the value of α depends not only on the orbital altitude of the considered GNSS but also on the elevation-dependent distribution of GNSS observations and their weighting, as well as the elevation mask angle and the tropospheric mapping function. Based on the model, representative values of αGPS=−0.051, αGLO=−0.055, αGAL=−0.041, and αBDS-3=−0.046 are derived for GPS, GLONASS, Galileo, and BeiDou-3 at a 10∘ elevation cutoff angle. These values may vary by Δα≈0.003 depending on the specific model assumptions and data processing parameters in a precise orbit determination or precise point positioning. Likewise changes of about ±0.003 can be observed when varying the cutoff angle between 5∘ and 15∘. Numéro de notice : A2022-836 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01678-x Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.1007/s00190-022-01678-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102033
in Journal of geodesy > vol 96 n° 11 (November 2022) . - n° 90[article]Galileo status: orbits, clocks, and positioning / Peter Steigenberger in GPS solutions, vol 21 n° 2 (April 2017)
[article]
Titre : Galileo status: orbits, clocks, and positioning Type de document : Article/Communication Auteurs : Peter Steigenberger, Auteur ; Oliver Montenbruck, Auteur Année de publication : 2017 Article en page(s) : pp 319 – 331 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] constellation Galileo
[Termes IGN] données Galileo
[Termes IGN] Galileo
[Termes IGN] positionnement ponctuel précisRésumé : (auteur) The European Global Navigation Satellite System Galileo is close to declaration of initial services. The current constellation comprises a total of 12 active satellites, four of them belonging to the first generation of In-Orbit Validation satellites, while the other eight are Full Operational Capability (FOC) satellites. Although the first pair of FOC satellites suffered from a launch anomaly resulting in an elliptical orbit, these satellites can be used for scientific applications without relevant limitations. The quality of broadcast orbits and clocks has significantly improved since the beginning of routine transmissions and has reached a signal-in-space range error of 30 cm. Precise orbit products generated by the scientific community achieve an accuracy of about 5 cm if appropriate models for the solar radiation pressure are applied. The latter is also important for an assessment of the clock stability as orbit errors are mapped to the apparent clock. Dual-frequency single point positioning with broadcast orbits and clocks of nine Galileo satellites that have so far been declared healthy already enables an accuracy at a few meters. Galileo-only precise point positioning approaches a precision of 2 cm in static mode using daily solutions. Numéro de notice : A2017-211 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-016-0566-5 En ligne : http://dx.doi.org/10.1007/s10291-016-0566-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85051
in GPS solutions > vol 21 n° 2 (April 2017) . - pp 319 – 331[article]Estimation of satellite antenna phase center offsets for Galileo / Peter Steigenberger in Journal of geodesy, vol 90 n° 8 (August 2016)
[article]
Titre : Estimation of satellite antenna phase center offsets for Galileo Type de document : Article/Communication Auteurs : Peter Steigenberger, Auteur ; M. Fritsche, Auteur ; Rolf Dach, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : Pages 773 - 785 Note générale : bibliograohie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne Galileo
[Termes IGN] centre de phase
[Termes IGN] compensation
[Termes IGN] orbitographie
[Termes IGN] positionnement par GNSS
[Termes IGN] signal Galileo
[Termes IGN] soleil (étoile)Résumé : (auteur) Satellite antenna phase center offsets for the Galileo In-Orbit Validation (IOV) and Full Operational Capability (FOC) satellites are estimated by two different analysis centers based on tracking data of a global GNSS network. The mean x- and y-offsets could be determined with a precision of a few centimeters. However, daily estimates of the x-offsets of the IOV satellites show pronounced systematic effects with a peak-to-peak amplitude of up to 70 cm that depend on the orbit model and the elevation of the Sun above the orbital plane. For the IOV y-offsets, no dependence on the orbit model exists but the scatter strongly depends on the elevation of the Sun above the orbital plane. In general, these systematic effects are significantly smaller for the FOC satellites. The z-offsets of the two analysis centers agree within the 10–15 cm level, and the time series do not show systematic effects. The application of an averaged Galileo satellite antenna model obtained from the two solutions results in a reduction of orbit day boundary discontinuities by up to one third—even if an independent software package is used. Numéro de notice : A2016-505 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-016-0909-6 En ligne : http://dx.doi.org/10.1007/s00190-016-0909-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81529
in Journal of geodesy > vol 90 n° 8 (August 2016) . - Pages 773 - 785[article]Impact of the arc length on GNSS analysis results / Simon Lutz in Journal of geodesy, vol 90 n° 4 (April 2016)
[article]
Titre : Impact of the arc length on GNSS analysis results Type de document : Article/Communication Auteurs : Simon Lutz, Auteur ; Michael Meindl, Auteur ; Peter Steigenberger, Auteur ; Gerhard Beutler, Auteur ; Krzysztof Sosnica, Auteur ; Stefan Schaer, Auteur ; Rolf Dach, Auteur ; Daniel Arnold, Auteur ; Daniela Thaller, Auteur ; Adrian Jäggi, Auteur Année de publication : 2016 Article en page(s) : pp 365 - 378 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] géocentre
[Termes IGN] mouvement du pôle
[Termes IGN] orientation de la Terre
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) Homogeneously reprocessed combined GPS/GLONASS 1- and 3-day solutions from 1994 to 2013, generated by the Center for Orbit Determination in Europe (CODE) in the frame of the second reprocessing campaign REPRO-2 of the International GNSS Service, as well as GPS- and GLONASS-only 1- and 3-day solutions for the years 2009 to 2011 are analyzed to assess the impact of the arc length on the estimated Earth Orientation Parameters (EOP, namely polar motion and length of day), on the geocenter, and on the orbits. The conventional CODE 3-day solutions assume continuity of orbits, polar motion components, and of other parameters at the day boundaries. An experimental 3-day solution, which assumes continuity of the orbits, but independence from day to day for all other parameters, as well as a non-overlapping 3-day solution, is included into our analysis. The time series of EOPs, geocenter coordinates, and orbit misclosures, are analyzed. The long-arc solutions were found to be superior to the 1-day solutions: the RMS values of EOP and geocenter series are typically reduced between 10 and 40 %, except for the polar motion rates, where RMS reductions by factors of 2–3 with respect to the 1-day solutions are achieved for the overlapping and the non-overlapping 3-day solutions. In the low-frequency part of the spectrum, the reduction is even more important. The better performance of the orbits of 3-day solutions with respect to 1-day solutions is also confirmed by the validation with satellite laser ranging. Numéro de notice : A2016-250 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0878-1 Date de publication en ligne : 24/12/2015 En ligne : https://doi.org/10.1007/s00190-015-0878-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80758
in Journal of geodesy > vol 90 n° 4 (April 2016) . - pp 365 - 378[article]GNSS satellite geometry and attitude models / Oliver Montenbruck in Advances in space research, vol 56 n° 6 (September 2015)
[article]
Titre : GNSS satellite geometry and attitude models Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Ralf Schmid, Auteur ; F. Mercier, Auteur ; Peter Steigenberger, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1015 - 1029 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne GNSS
[Termes IGN] centre de phase
[Termes IGN] données TLS (télémétrie)
[Termes IGN] format ANTEX
[Termes IGN] satellite de positionnement
[Termes IGN] satellite de télémétrieRésumé : (auteur) This article discusses the attitude modes employed by present Global (and Regional) Navigation Satellite Systems (GNSSs) and the models used to describe them along with definitions of the constellation-specific spacecraft body frames. A uniform convention for the labeling of the principal spacecraft axes is proposed by the International GNSS Service (IGS), which results in a common formulation of the nominal attitude of all GNSS satellites in yaw-steering mode irrespective of their specific orbit and constellation. The conventions defined within this document provide the basis for the specification of antenna phase center offsets and variations in a multi-GNSS version of the IGS absolute phase center model in the ANTEX (antenna exchange) format. To facilitate the joint analysis of GNSS observations and satellite laser ranging measurements, laser retroreflector array coordinates consistent with the IGS-specific spacecraft frame conventions are provided in addition to representative antenna offset values for all GNSS constellations. Numéro de notice : A2015-874 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2015.06.019 En ligne : http://dx.doi.org/10.1016/j.asr.2015.06.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79376
in Advances in space research > vol 56 n° 6 (September 2015) . - pp 1015 - 1029[article]Enhanced solar radiation pressure modeling for Galileo satellites / Oliver Montenbruck in Journal of geodesy, vol 89 n° 3 (March 2015)PermalinkGalileo orbit determination using combined GNSS and SLR observations / Stefan Hackel in GPS solutions, vol 19 n° 1 (January 2015)PermalinkIGS-MGEX, on prépare le terrain pour les sciences et techniques GNSS multi-constellation / Oliver Montenbruck in XYZ, n° 140 (septembre - novembre 2014)PermalinkImpact of Earth radiation pressure on GPS position estimates / C. Rodriguez-Solano in Journal of geodesy, vol 86 n° 5 (May 2012)PermalinkMulti-technique comparison of troposphere zenith delays and gradients during CONT08 / Kamil Teke in Journal of geodesy, vol 85 n° 7 (July 2011)PermalinkEvaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis / Rolf Dach in Journal of geodesy, vol 85 n° 2 (February 2011)PermalinkImproved constraints on models of glacial isostatic adjustment: A review of the contribution of ground-based geodetic observations / Matt A. King in Surveys in Geophysics, vol 31 n° 5 (September 2010)PermalinkCONGO: First GPS/GIOVE tracking network for science, research / Oliver Montenbruck in GPS world, vol 20 n° 9 (September 2009)PermalinkGeneration of a consistent absolute phase center correction model for GPS receiver and satellite antennas / Ralf Schmid in Journal of geodesy, vol 81 n° 12 (December 2007)Permalink