Détail de l'autorité
ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3
nom du congrès :
ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow
début du congrès :
31/08/2020
fin du congrès :
02/09/2020
ville du congrès :
Nice (en ligne)
pays du congrès :
France
site des actes du congrès :
|
Documents disponibles (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne (2020)
Titre : Classification of time series of Sentinel-2 images for large scale mapping in Cameroon Type de document : Article/Communication Auteurs : Hermann Tagne, Auteur ; Arnaud Le Bris , Auteur ; David Monkam, Auteur ; Clément Mallet , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Projets : TOSCA Parcelle / Le Bris, Arnaud Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : pp 633 - 640 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Cameroun
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] série temporelleRésumé : (auteur) Sentinel-2 satellites provide dense image time series exhibiting high spectral, spatial and temporal resolution. These images are in particular of utter interest to map Land-Cover (LC) at large scale. LC maps can now be computed on a yearly basis at the scale of a country with efficient supervised classifiers, assuming suitable training data are available. However, the efficient exploitation of large amount of Sentinel-2 imagery still remain challenging on unexplored areas where state-of-the-art classifiers are prone to fail. This paper focuses on Land-Cover mapping over Cameroon for the purpose of updating the national topographic geodatabase. The ι2 framework is adopted and tested for the specificity of the country. Here, experiments focus on generic classes (five) which enables providing robust focusing masks for higher resolution classifications. Two strategies are compared: (i) a LC map is calculated out of a year long time series and (ii) monthly LC maps are generated and merged into a single yearly map. Satisfactory accuracy scores are obtained, allowing to provide a first step towards finer-grained map retrieval. Numéro de notice : C2020-006 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-633-2020 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-633-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95656 On the joint exploitation of optical and SAR satellite imagery for grassland monitoring / Anatol Garioud (2020)
Titre : On the joint exploitation of optical and SAR satellite imagery for grassland monitoring Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Sébastien Giordano , Auteur ; Clément Mallet , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3-2020 Projets : 1-Pas de projet / Le Bris, Arnaud Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : pp 591 - 598 Format : 21 x 30 cm Note générale : bibliographie
This research has been funded by the Agence pour le Développement Et la Maîtrise de l’Energie (ADEME) and the Centre National d’Etudes Spatiales (CNES).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] prairie
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] surveillance de la végétationRésumé : (auteur) Time series of optical and Synthetic Aperture RADAR (SAR) images provide complementary knowledge about the cover and use of the Earth surface since they exhibit information of distinct physical nature. They have proved to be particularly relevant for monitoring large areas with high temporal dynamics and related to significant ecosystem services. Grasslands are such crucial surfaces, both in terms of economic and environmental issues and the automatic and frequent monitoring of their agricultural practices is required for many purposes. To address this problem, the deep-based SenDVI framework is presented. SenDVI proposes an object-based methodology to estimate NDVI values from Sentinel-1 SAR observations and contextual knowledge (weather, terrain). Values are regressed every 6 days for compliance with monitoring purposes. Very satisfactory results are obtained with this low-level multimodal fusion strategy (R 2 =0.84 on a Sentinel-2 tile). Finer analysis is however required to fully assess the relevance of each modality (Sentinel-1, Sentinel-2, weather, terrain) and feature sets and to propose the simplest conceivable framework. Results show that not all features are necessary and can be discarded while others have a mandatory contribution to the regression task. Moreover, experiments prove that accuracy can be improved by not saturating the network with non-essential information (among contextual knowledge in particular). This allows to move towards more operational solution. Numéro de notice : C2020-004 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-591-2020 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-591-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95664 Very high resolution land cover mapping of urban areas at global scale with convolutional neural network / Thomas Tilak (2020)
Titre : Very high resolution land cover mapping of urban areas at global scale with convolutional neural network Type de document : Article/Communication Auteurs : Thomas Tilak , Auteur ; Arnaud Braun , Auteur ; David Chandler , Auteur ; Nicolas David , Auteur ; Sylvain Galopin , Auteur ; Amélie Lombard, Auteur ; Camille Parisel , Auteur ; Camille Parisel , Auteur ; Matthieu Porte , Auteur ; Marjorie Robert, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Autre Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Projets : 1-Pas de projet / Le Bris, Arnaud Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : 8 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] BD Alti
[Termes IGN] carte d'occupation du sol
[Termes IGN] chaîne de production
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation croisée maximale
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Gironde (33)
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] image multibande
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation sémantique
[Termes IGN] vectorisation
[Termes IGN] zone d'intérêt
[Termes IGN] zone urbaineRésumé : (auteur) This paper describes a methodology to produce a 7-classes land cover map of urban areas from very high resolution images and limited noisy labeled data. The objective is to make a segmentation map of a large area (a french department) with the following classes: asphalt, bare soil, building, grassland, mineral material (permeable artificialized areas), forest and water from 20cm aerial images and Digital Height Model. We created a training dataset on a few areas of interest aggregating databases, semi-automatic classification, and manual annotation to get a complete ground truth in each class. A comparative study of different encoder-decoder architectures (U-Net, U-Net with Resnet encoders, Deeplab v3+) is presented with different loss functions. The final product is a highly valuable land cover map computed from model predictions stitched together, binarized, and refined before vectorization. Numéro de notice : C2020-038 Affiliation des auteurs : IGN+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-201-2020 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-201-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95079
Titre : XXIV ISPRS Congress, Commission 3 Type de document : Actes de congrès Auteurs : Nicolas Paparoditis , Éditeur scientifique ; Clément Mallet , Éditeur scientifique ; Florent Lafarge, Éditeur scientifique ; J. Jiang, Éditeur scientifique ; Ahmed Shaker, Éditeur scientifique ; Hongping Zhang, Éditeur scientifique Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3-2020 Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] utilisation du solNuméro de notice : 17627 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : IMAGERIE Nature : Actes nature-HAL : DirectOuvrColl/Actes DOI : sans Date de publication en ligne : 06/08/2020 En ligne : https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/in [...] Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97138 Voir aussi