Détail de l'auteur
Auteur Guillaume Touya
Commentaire :
Autorités liées :
idHAL :
guillaume-touya
idRef :
autre URL :
ORCID :
Scopus :
Publons :
G. Scholar :
DBLP URL :
|
Documents disponibles écrits par cet auteur (158)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
GeoDanceHive: An operational hive for honeybees dances recording / Sylvain Galopin in Animals, vol 13 n° 7 (April-1 2023)
[article]
Titre : GeoDanceHive: An operational hive for honeybees dances recording Type de document : Article/Communication Auteurs : Sylvain Galopin , Auteur ; Guillaume Touya , Auteur ; Pierrick Aupinel, Auteur ; Freddie-Jeanne Richard, Auteur Année de publication : 2023 Projets : 3-projet - voir note / Article en page(s) : n° 1182 Note générale : bibliographie
This research was funded by the french ministries of Agriculture and Food Sovereignty (MASA—FCPR program), Ecological Transition and Territorial Cohesion (MTECT), Health and Prevention (MSP) and Higher Education and Research (MESR) and by the French national facility for institutional procurement of VHR satellite imagery (DINAMIS) and by the Lune de Miel® Fondation. This research was financially supported by the French Office for Biodiversity, on the fee envelope for diffuse pollution of the Écophyto II+ coord plan. F-J Richard, partners P. Aupinel and G. Touya for the DANCE project.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] alimentation
[Termes IGN] comportement
[Termes IGN] enregistrement de données
[Termes IGN] Hymenoptera (ordre)Résumé : (auteur) Honeybees are known for their ability to communicate about resources in their environment. They inform the other foragers by performing specific dance sequences according to the spatial characteristics of the resource. The purpose of our study is to provide a new tool for honeybees dances recording, usable in the field, in a practical and fully automated way, without condemning the harvest of honey. We designed and equipped an outdoor prototype of a production hive, later called “GeoDanceHive”, allowing the continuous recording of honeybees’ behavior such as dances and their analysis. The GeoDanceHive is divided into two sections, one for the colony and the other serving as a recording studio. The time record of dances can be set up from minutes to several months. To validate the encoding and sampling quality, we used an artificial feeder and visual decoding to generate maps with the vector endpoints deduced from the dance information. The use of the GeoDanceHive is designed for a wide range of users, who can meet different objectives, such as researchers or professional beekeepers. Thus, our hive is a powerful tool for honeybees studies in the field and could highly contribute to facilitating new research approaches and a better understanding landscape ecology of key pollinators. Numéro de notice : A2023-087 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ani13071182 En ligne : https://doi.org/10.3390/ani13071182 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102987
in Animals > vol 13 n° 7 (April-1 2023) . - n° 1182[article]Deriving map images of generalised mountain roads with generative adversarial networks / Azelle Courtial in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
[article]
Titre : Deriving map images of generalised mountain roads with generative adversarial networks Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya , Auteur ; Xiang Zhang, Auteur Année de publication : 2023 Article en page(s) : pp 499 - 528 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage non-dirigé
[Termes IGN] carte routière
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] montagne
[Termes IGN] réseau antagoniste génératif
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Map generalisation is a process that transforms geographic information for a cartographic at a specific scale. The goal is to produce legible and informative maps even at small scales from a detailed dataset. The potential of deep learning to help in this task is still unknown. This article examines the use case of mountain road generalisation, to explore the potential of a specific deep learning approach: generative adversarial networks (GAN). Our goal is to generate images that depict road maps generalised at the 1:250k scale, from images that depict road maps of the same area using un-generalised 1:25k data. This paper not only shows the potential of deep learning to generate generalised mountain roads, but also analyses how the process of deep learning generalisation works, compares supervised and unsupervised learning and explores possible improvements. With this experiment we have exhibited an unsupervised model that is able to generate generalised maps evaluated as good as the reference and reviewed some possible improvements for deep learning-based generalisation, including training set management and the definition of a new road connectivity loss. All our results are evaluated visually using a four questions process and validated by a user test conducted on 113 individuals. Numéro de notice : A2023-073 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2123488 Date de publication en ligne : 20/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2123488 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101901
in International journal of geographical information science IJGIS > vol 37 n° 3 (March 2023) . - pp 499 - 528[article]Where am I now? modelling disorientation in pan-scalar maps / Guillaume Touya in ISPRS International journal of geo-information, vol 12 n° 2 (February 2023)
[article]
Titre : Where am I now? modelling disorientation in pan-scalar maps Type de document : Article/Communication Auteurs : Guillaume Touya , Auteur ; Maieul Gruget , Auteur ; Ian Muehlenhaus, Auteur Année de publication : 2023 Article en page(s) : n° 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] cognition
[Termes IGN] données multiéchelles
[Termes IGN] échelle cartographique
[Termes IGN] interaction homme-machine
[Termes IGN] lecture de carte
[Termes IGN] représentation mentale
[Termes IGN] représentation mentale spatiale
[Termes IGN] représentation multiple
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Disorientation is a common feeling for all users of zoomable multi-scale maps, even for those with good orientation and spatial skills. We make the assumption that this problem is mainly due to the desert fog effect, documented in human–computer interaction within multi-scale zoomable environments. Starting with a collection of reported experiences of disorientation, this paper explores this notion from the spatial cognition, philosophical and human–computer interaction perspectives and proposes a model of disorientation in the exploration of multi-scale maps. We argue that disorientation is a problem of reconciliation between the current map view and the mental map of the user, where landmarks visible on the map or memorised in the mental map play a key role. The causes for failed reconciliation are discussed and illustrated by our collected experiences of disorientation. Numéro de notice : A2023-130 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi12020062 En ligne : https://doi.org/10.3390/ijgi12020062 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102585
in ISPRS International journal of geo-information > vol 12 n° 2 (February 2023) . - n° 62[article]
Titre : AnchorWhat : Décompositions de cartes pan-scalaires Type de document : Article/Communication Auteurs : Maieul Gruget , Auteur ; Guillaume Touya , Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2023 Conférence : Journée Recherche de l'UGE-IGN-ENSG 2023, 32e journée de la recherche, Jumeaux numérique et anthropocène : données de simulation pour aider à la prise de décision 30/03/2023 Champs-sur-Marne France programme Langues : Français (fre) Descripteur : [Vedettes matières IGN] Généralisation Résumé : (auteur) Poster de vulgarisation scientifique à la journée de la recherche IGN 2023. Inspiré de la théorie des ancres de Couclelis et collègues, ce poster présente une méthodologie d'analyse de présence et persistance d'éléments cartographiques à travers différentes explorations cartographiques. Numéro de notice : C2023-002 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Poster nature-HAL : Poster-sans-CL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103185 Documents numériques
peut être téléchargé
AnchorWhat - pdf auteurAdobe Acrobat PDF
Titre : Exploring the potential of deep learning for map generalization Type de document : Thèse/HDR Auteurs : Azelle Courtial , Auteur ; Guillaume Touya , Directeur de thèse ; Xiang Zhang, Directeur de thèse Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2023 Importance : 216 p. Note générale : bibliographie
Doctoral thesis from Université Gustave Eiffel, Doctoral school MSTIC, Specialty "Geographic information sciences"Langues : Anglais (eng) Descripteur : [Termes IGN] généralisation automatique de données
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] relation spatiale
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal profond
[Vedettes matières IGN] GénéralisationIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Map generalization is a process that aims to adapt the level of detail of geographic information for cartography at a small scale. Automating the process is complex but essential in map production. We think this research field could benefit from the recent advances in deep learning that make it possible to solve more and more complex tasks, using numerous training examples. This thesis proposes exploring the potential of deep learning for map generalization. This exploration is built upon three map generalization use cases: recognition of spatial relations, graphic generalization of mountain roads, and generalization of topographic maps at medium scales. These three use cases enable us to address research questions relative to the concrete implementation of deep learning models for map generalization (including dataset creation and architecture), the evaluation of such models and their integration in existing generalization processes. In addition to the models and training set adapted for each of our case studies already mentioned, we propose evaluation methods adapted to the challenges of cartographic generalization by deep learning. Finally, we propose a partitioning of the cartographic generalization into sub-problems facilitating the resolution by learning and allowing the generation of generalized map images. Note de contenu : Introduction
Part 1 A new paradigm for map generalization
Chapter A. Literature review
Chapter B. Formulating map generalization as a deep learning task
Chapter C. Designing a framework for deep learning based map generalization
Part 2 Exploration of deep learning for map generalization
Chapter D. Can graph neural networks model spatial relations?
Chapter E. CNN for the generalization of roads
Chapter F. The generation of topographic map with several themes
Part III The future of map generalization with deep learning
Chapter G. Usages of deep learning models for map generalization
Chapter H. Evaluation of deep learning predictions
ConclusionNuméro de notice : 17752 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Thèse française Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 05/05/2023 En ligne : https://theses.hal.science/tel-04089883v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103186 Geographically masking addresses to study COVID-19 clusters / Walid Houfaf-Khoufaf in Cartography and Geographic Information Science, vol inconnu (2023)PermalinkIncorporating ideas of structure and meaning in interactive multi scale mapping environments / Guillaume Touya in International journal of cartography, vol inconnu (2023)PermalinkMissing the city for buildings? A critical review of pan-scalar map generalization and design in contemporary zoomable maps / Maieul Gruget in International journal of cartography, vol inconnu (2023)PermalinkPermalinkSemi-automatic development of thematic tactile maps / Jakub Wabiński in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)PermalinkExperiencing virtual geographic environment in urban 3D participatory e-planning: A user perspective / Thibaud Chassin in Landscape and Urban Planning, vol 224 (August 2022)PermalinkConstraint-based evaluation of map images generalized by deep learning / Azelle Courtial in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)PermalinkA l'aide ! Je me suis perdu en zoomant / Guillaume Touya in Cartes & Géomatique, n° 247-248 (mars-juin 2022)PermalinkIdentification de relations spatiales par apprentissage profond sur des graphes / Azelle Courtial in Cartes & Géomatique, n° 247-248 (mars-juin 2022)PermalinkNeural map style transfer exploration with GANs / Sidonie Christophe in International journal of cartography, vol 8 n° 1 (March 2022)Permalink
HDR defense in 2017
Research fellow in CRENAU research team from AAU lab in Nantes