Détail de l'auteur
Auteur Björn Waske |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features / Peijun Du in ISPRS Journal of photogrammetry and remote sensing, vol 105 (July 2015)
[article]
Titre : Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features Type de document : Article/Communication Auteurs : Peijun Du, Auteur ; Alim Samat, Auteur ; Björn Waske, Auteur ; Sicong Liu, Auteur ; Zhenhong Li, Auteur Année de publication : 2015 Article en page(s) : pp 38 - 53 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données polarimétriques
[Termes IGN] image Radarsat
[Termes IGN] polarimétrie radar
[Termes IGN] Rotation Forest classification
[Termes IGN] texture d'imageRésumé : (auteur) Fully Polarimetric Synthetic Aperture Radar (PolSAR) has the advantages of all-weather, day and night observation and high resolution capabilities. The collected data are usually sorted in Sinclair matrix, coherence or covariance matrices which are directly related to physical properties of natural media and backscattering mechanism. Additional information related to the nature of scattering medium can be exploited through polarimetric decomposition theorems. Accordingly, PolSAR image classification gains increasing attentions from remote sensing communities in recent years. However, the above polarimetric measurements or parameters cannot provide sufficient information for accurate PolSAR image classification in some scenarios, e.g. in complex urban areas where different scattering mediums may exhibit similar PolSAR response due to couples of unavoidable reasons. Inspired by the complementarity between spectral and spatial features bringing remarkable improvements in optical image classification, the complementary information between polarimetric and spatial features may also contribute to PolSAR image classification. Therefore, the roles of textural features such as contrast, dissimilarity, homogeneity and local range, morphological profiles (MPs) in PolSAR image classification are investigated using two advanced ensemble learning (EL) classifiers: Random Forest and Rotation Forest. Supervised Wishart classifier and support vector machines (SVMs) are used as benchmark classifiers for the evaluation and comparison purposes. Experimental results with three Radarsat-2 images in quad polarization mode indicate that classification accuracies could be significantly increased by integrating spatial and polarimetric features using ensemble learning strategies. Rotation Forest can get better accuracy than SVM and Random Forest, in the meantime, Random Forest is much faster than Rotation Forest. Numéro de notice : A2015-706 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.03.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.03.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78342
in ISPRS Journal of photogrammetry and remote sensing > vol 105 (July 2015) . - pp 38 - 53[article]Fusion of support vector machines for classification of multisensor data / Björn Waske in IEEE Transactions on geoscience and remote sensing, vol 45 n° 12 Tome 1 (December 2007)
[article]
Titre : Fusion of support vector machines for classification of multisensor data Type de document : Article/Communication Auteurs : Björn Waske, Auteur ; Jon Atli Benediktsson, Auteur Année de publication : 2007 Article en page(s) : pp 3858 - 3866 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] classificateur non paramétrique
[Termes IGN] classificateur paramétrique
[Termes IGN] classification par arbre de décision
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] fusion d'images
[Termes IGN] image multicapteur
[Termes IGN] image optique
[Termes IGN] image radarRésumé : (Auteur) The classification of multisensor data sets, consisting of multitemporal synthetic aperture radar data and optical imagery, is addressed. The concept is based on the decision fusion of different outputs. Each data source is treated separately and classified by a support vector machine (SVM). Instead of fusing the final classification outputs (i.e., land cover classes), the original outputs of each SVM discriminant function are used in the subsequent fusion process. This fusion is performed by another SVM, which is trained on the a priori outputs. In addition, two voting schemes are applied to create the final classification results. The results are compared with well-known parametric and nonparametric classifier methods, i.e., decision trees, the maximum-likelihood classifier, and classifier ensembles. The proposed SVM-based fusion approach outperforms all other approaches and significantly improves the results of a single SVM, which is trained on the whole multisensor data set. Copyright IEEE Numéro de notice : A2007-581 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2007.898446 En ligne : https://doi.org/10.1109/TGRS.2007.898446 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28944
in IEEE Transactions on geoscience and remote sensing > vol 45 n° 12 Tome 1 (December 2007) . - pp 3858 - 3866[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-07121A RAB Revue Centre de documentation En réserve L003 Disponible