Détail de l'auteur
Auteur B. Dixon |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multispectral land use classification using neural networks and support vector machines: one or the other, or both? / B. Dixon in International Journal of Remote Sensing IJRS, vol 29 n°3-4 (February 2008)
[article]
Titre : Multispectral land use classification using neural networks and support vector machines: one or the other, or both? Type de document : Article/Communication Auteurs : B. Dixon, Auteur ; N. Candade, Auteur Année de publication : 2008 Article en page(s) : pp 1185 - 1206 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] occupation du solRésumé : (Auteur) Land use classification is an important part of many remote sensing applications. A lot of research has gone into the application of statistical and neural network classifiers to remote-sensing images. This research involves the study and implementation of a new pattern recognition technique introduced within the framework of statistical learning theory called Support Vector Machines (SVMs), and its application to remote-sensing image classification. Standard classifiers such as Artificial Neural Network (ANN) need a number of training samples that exponentially increase with the dimension of the input feature space. With a limited number of training samples, the classification rate thus decreases as the dimensionality increases. SVMs are independent of the dimensionality of feature space as the main idea behind this classification technique is to separate the classes with a surface that maximizes the margin between them, using boundary pixels to create the decision surface. Results from SVMs are compared with traditional Maximum Likelihood Classification (MLC) and an ANN classifier. The findings suggest that the ANN and SVM classifiers perform better than the traditional MLC. The SVM and the ANN show comparable results. However, accuracy is dependent on factors such as the number of hidden nodes (in the case of ANN) and kernel parameters (in the case of SVM). The training time taken by the SVM is several magnitudes less. Copyright Taylor & Francis Numéro de notice : A2008-009 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160701294661 En ligne : https://doi.org/10.1080/01431160701294661 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29004
in International Journal of Remote Sensing IJRS > vol 29 n°3-4 (February 2008) . - pp 1185 - 1206[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-08021 RAB Revue Centre de documentation En réserve L003 Disponible