Détail de l'autorité
ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2
nom du congrès :
ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow
début du congrès :
31/08/2020
fin du congrès :
02/09/2020
ville du congrès :
Nice (en ligne)
pays du congrès :
France
site des actes du congrès :
|
Documents disponibles (12)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
vol V-2-2020 - August 2020 - [Actes] XXIV ISPRS virtual Congress, Commission 2, 31th August-2nd September 2020, Nice, France (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Nicolas PaparoditisContient
- Provably consistent distributed Delaunay triangulation / Mathieu Brédif in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
- Guided feature matching for multi-epoch historical image blocks pose estimation / Lulin Zhang in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
- Geometric distortion of historical images for 3D visualization / Evelyn Paiz-Reyes in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
- A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
- CNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments / Arnaud Le Bris in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
- Correction of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis / Lâmân Lelégard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
- Planar polygons detection in lidar scans based on sensor topology enhanced Ransac / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
- Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
- Towards structureless bundle adjustment with two- and three-view structure approximation / Ewelina Rupnik in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
vol V-3-2020 - August 2020 - [Actes] XXIV ISPRS virtual Congress, Commission 3, 31th August-2nd September 2020, Nice, France (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Nicolas Paparoditis
[n° ou bulletin]
est un bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences / International society for photogrammetry and remote sensing (1980 -) (2012 - )
Titre : vol V-3-2020 - August 2020 - [Actes] XXIV ISPRS virtual Congress, Commission 3, 31th August-2nd September 2020, Nice, France Type de document : Périodique Auteurs : Nicolas Paparoditis , Éditeur scientifique ; Clément Mallet , Éditeur scientifique ; Florent Lafarge, Éditeur scientifique ; J. Jiang, Éditeur scientifique ; Ahmed Shaker, Éditeur scientifique ; Hongping Zhang, Éditeur scientifique ; et al., Éditeur scientifique Année de publication : 2020 Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Langues : Anglais (eng) Numéro de notice : sans Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Numéro de périodique nature-HAL : DirectOuvrColl/Actes En ligne : https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=bulletin_display&id=33161 [n° ou bulletin]Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
[article]
Titre : Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion Type de document : Article/Communication Auteurs : Olivier Stocker, Auteur ; Arnaud Le Bris , Auteur Année de publication : 2020 Projets : MAESTRIA / Mallet, Clément Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Projets : TOSCA Parcelle / Le Bris, Arnaud Article en page(s) : pp 557 - 564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 7
[Termes IGN] occupation du sol
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Needs for fine-grained, accurate and up-to-date land cover (LC) data are important to answer both societal and scientific purposes. Several automatic products have already been proposed, but are mostly generated out of satellite sensors like Sentinel-2 (S2) or Landsat. Metric sensors, e.g. SPOT-6/7, have been less considered, while they enable (at least annual) acquisitions at country scale and can now be efficiently processed thanks to deep learning (DL) approaches. This study thus aimed at assessing whether such sensor can improve such land cover products. A custom simple yet effective U-net - Deconv-Net inspired DL architecture is developed and applied to SPOT-6/7 and S2 for different LC nomenclatures, aiming at comparing the relevance of their spatial/spectral configurations and investigating their complementarity. The proposed DL architecture is then extended to data fusion and applied to previous sensors. At the end, the proposed fusion framework is used to enrich an existing S2 based LC product, as it is generic enough to cope with fusion at distinct levels. Numéro de notice : A2020-504 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-557-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-557-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95644
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2020 (August 2020) . - pp 557 - 564[article]CNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments / Arnaud Le Bris in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
[article]
Titre : CNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments Type de document : Article/Communication Auteurs : Arnaud Le Bris , Auteur ; Sébastien Giordano , Auteur ; Clément Mallet , Auteur Année de publication : 2020 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 1013 - 1019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données historiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image aérienne
[Termes IGN] modèle numérique de surface
[Termes IGN] occupation du sol
[Termes IGN] orthoimage
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes occurred since the mid 20th century. They provide a relatively dense temporal sampling of the territories with a very high spatial resolution. Thus, they offer time series data which can answer a large variety of long-term environmental monitoring studies. Besides, they are generally stereoscopic surveys, making it possible to derive 3D information (Digital Surface Models). In recent years, they have often been digitized, making them more suitable to be considered in automatic analyses processes. Some photogrammetric softwares make it possible to retrieve their geometry (pose and camera calibration) and to generate corresponding DSM and orthophotomosaic. Thus, archival aerial photogrammetric surveys appear as being a powerful remote sensing data source to study land use/cover evolution over the last century. However, several difficulties have to be faced to be able to use them in automatic analysis processes. Indeed, surveys available on a study area can exhibit very different characteristics: survey pattern, focal, spatial resolution, modality (panchromatic, colour, infrared…). Planimetric and altimetric accuracies of derived products strongly depend on these characteristics. Thus, analysis processes have to cope with these uncertainties. Another important gap states in the lack of training data. Deep learning methods and especially Convolutional Neural Networks (CNN) are at present the most efficient semantic segmentation methods as long as a sufficient training dataset is available. However, temporal gaps can be very important between existing available databases and archival data. In this study, two custom variants of simple yet effective U-net - Deconv-Net inspired DL architectures are developed to process ortho-image and DSM based information. They are then trained out of a groundtruth derived out of a recent database to process archival datasets. Numéro de notice : A2020-469 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-1013-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-1013-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95637
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2020 (August 2020) . - pp 1013 - 1019[article]Correction of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis / Lâmân Lelégard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
[article]
Titre : Correction of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis Type de document : Article/Communication Auteurs : Lâmân Lelégard , Auteur ; Arnaud Le Bris , Auteur ; Sébastien Giordano , Auteur Année de publication : 2020 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 871 - 876 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] correction radiométrique
[Termes IGN] homogénéisation
[Termes IGN] image numériséeRésumé : (auteur) Orthophotomosaic is defined as a single image that can be layered on a map. The term “mosaic” implies that it is produced from a set of images, usually aerial images. Even if these images are taken during cloudless period, they are impaired by radiometric inhomogeneity mostly due to atmospheric phenomena, like hotspot, haze or high altitude clouds shadows as well as imaging device systematisms, like lens vignetting. These create some unsightly radiometric inhomogeneity in the orthophotomosaic that could be corrected by using a Wallis filter. Yet this solution leads to a significant loss of contrast at small scales. This work introduces an alternative to Wallis filter by considering some systematic radiometric behaviours in the images through a principal component analysis process. Numéro de notice : A2020-501 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-871-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-871-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95642
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2020 (August 2020) . - pp 871 - 876[article]Geometric distortion of historical images for 3D visualization / Evelyn Paiz-Reyes in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkGuided feature matching for multi-epoch historical image blocks pose estimation / Lulin Zhang in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkPlanar polygons detection in lidar scans based on sensor topology enhanced Ransac / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkProvably consistent distributed Delaunay triangulation / Mathieu Brédif in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkTowards structureless bundle adjustment with two- and three-view structure approximation / Ewelina Rupnik in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkA worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkPermalink