Détail de l'auteur
Auteur J. Youn |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extracting urban road networks from high-resolution true orthoimage and Lidar / J. Youn in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 2 (February 2008)
[article]
Titre : Extracting urban road networks from high-resolution true orthoimage and Lidar Type de document : Article/Communication Auteurs : J. Youn, Auteur ; J. Bethel, Auteur ; et al., Auteur Année de publication : 2008 Article en page(s) : pp 227 - 237 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification dirigée
[Termes IGN] données lidar
[Termes IGN] extraction automatique
[Termes IGN] lasergrammétrie
[Termes IGN] orthoimage intégrale
[Termes IGN] réseau routier
[Termes IGN] segmentation en régions
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (Auteur) Automated or semi-automated feature extraction from remotely collected, large scale image data has been a challenging issue in digital photogrammetry for many years. In the feature extraction field, fusing different types of data to provide complementary information about the objects is becoming increasingly important. In this paper, we present a newly developed approach for the automatic extraction of urban area road networks from a true orthoimage and lidar assuming the road network to be a semi-grid pattern. The proposed approach starts from the subdivision of a study area into small regions based on homogeneity of the dominant road directions from the true orthoimage. Each region’s road candidates are selected with a proposed free passage measure. This process is called the “acupuncture” method. Features around the road candidates are used as key factors for an advanced “acupuncture method” called the region-based acupuncture method. Extracted road candidates are edited to avoid collocation with non-road features such as buildings and grass fields. In order to produce a building map for the prior step, a first-last return analysis and morphological filter are used with the lidar point cloud. A grass area thematic map is generated by supervised classification techniques from a synthetic image, which contains the three color bands from the true orthoimage and the lidar intensity value. Those non-road feature maps are used as a blocking mask for the roads. The accuracy of the result is evaluated quantitatively with respect to manually compiled road vectors, and a completeness of 80 percent and a correctness of 79 percent are obtained with the proposed algorithm on an area of 1,081,600 square meters. Copyright ASPRS Numéro de notice : A2008-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.74.2.227 En ligne : https://doi.org/10.14358/PERS.74.2.227 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29042
in Photogrammetric Engineering & Remote Sensing, PERS > vol 74 n° 2 (February 2008) . - pp 227 - 237[article]