Détail de l'auteur
Auteur K. Varshney |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multisource classification using Support Vector Machines: an empirical comparison with Decision Tree and Neural Network classifiers / P. Watanachaturaporn in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 2 (February 2008)
[article]
Titre : Multisource classification using Support Vector Machines: an empirical comparison with Decision Tree and Neural Network classifiers Type de document : Article/Communication Auteurs : P. Watanachaturaporn, Auteur ; M. Arora, Auteur ; K. Varshney, Auteur Année de publication : 2008 Article en page(s) : pp 239 - 246 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] classification par arbre de décision
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données multisources
[Termes IGN] extraction automatique
[Termes IGN] Himalaya
[Termes IGN] image IRS-LISS
[Termes IGN] Kappa de Cohen
[Termes IGN] modèle numérique de surface
[Termes IGN] occupation du solRésumé : (Auteur) Remote sensing image classification has proven to be attractive for extracting useful thematic information such as landcover. However, often for a given application, spectral information acquired by a remote sensing sensor may not be sufficient to derive accurate information. Incorporation of data from other sources such as a digital elevation model (DEM), and geophysical and geological data may assist in achieving more accurate land-cover classification from remote sensing images. Recently, support vector machines (SVM) have been proposed as an alternative for classification of remote sensing data, and the results are promising. In this paper, we employ the SVM algorithm to perform multisource classification. An IRS–1C LISS III image along with normalized differenced vegetation index (NDVI) image and DEM are used to produce a land-cover classification for a region in the Himalayas. The accuracy of SVM-based multisource classification is compared with several other nonparametric algorithms namely a decision tree classifier, and back propagation and radial basis function neural network classifiers. The well-known kappa coefficient of agreement is used to assess classification accuracy. The differences in the kappa coefficient of classifiers have been statistically evaluated using a pairwise Z-test. The results show a significant increase in the accuracy of the SVM based classifier on incorporation of ancillary data over classification performed solely on the basis of spectral data from remote sensing sensors. Copyright ASPRS Numéro de notice : A2008-048 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.74.2.239 En ligne : https://doi.org/10.14358/PERS.74.2.239 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29043
in Photogrammetric Engineering & Remote Sensing, PERS > vol 74 n° 2 (February 2008) . - pp 239 - 246[article]