Détail de l'auteur
Auteur H. Bagan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Land-cover classification using ASTER: multi-band combinations based on wavelet fusion and SOM neural network / H. Bagan in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 3 (March 2008)
[article]
Titre : Land-cover classification using ASTER: multi-band combinations based on wavelet fusion and SOM neural network Type de document : Article/Communication Auteurs : H. Bagan, Auteur ; Q. Wang, Auteur ; et al., Auteur Année de publication : 2008 Article en page(s) : pp 333 - 342 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte de Kohonen
[Termes IGN] classification par réseau neuronal
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Terra-ASTER
[Termes IGN] occupation du sol
[Termes IGN] précision de la classificationRésumé : (Auteur) In this study, we developed a land-cover classification methodology using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) visible near-infrared (VNIR), shortwave infrared (SWIR), and thermal infrared (TIR) band combinations based on wavelet fusion and the selforganizing map (SOM) neural network methods, and compared the classification accuracies of different combinations of ASTER multi-band data. A wavelet fusion concept named ARSIS (Amélioration de la Résolution Spatiale par Injection de Structures) was used to fuse ASTER data in the preprocessing stage. In order to apply the wavelet fusion method to ASTER data, the principal components of ASTER VNIR data were computed. The first principal component was used as the base image for wavelet fusion. In our experiments, the spatial resolution of ASTER VNIR, SWIR, and TIR data was adjusted to the same 15 m. SOM classification accuracy was increased from 83 percent to 93 percent by this fusion, and classification accuracy increased along with the increase of band numbers. Classification accuracy reaches the highest value when all 14 bands are used, but classification accuracy closely approached the highest value when three VNIR bands, three SWIR bands, and two TIR bands were used. A similar tendency was also obtained by the maximum likelihood classification (MLC) method, but the classification accuracies of MLC over all band combinations were considerably obviously lower than those obtained by the SOM method. Copyright ASPRS Numéro de notice : A2008-075 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.74.3.333 En ligne : https://doi.org/10.14358/PERS.74.3.333 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29070
in Photogrammetric Engineering & Remote Sensing, PERS > vol 74 n° 3 (March 2008) . - pp 333 - 342[article]