Détail de l'auteur
Auteur Cédric Vega
Commentaire :
Research Director at LIF (Laboratoire d'Inventaire Forestier) since 2014
Autorités liées :
idHAL :
cedric-vega
idRef :
autre URL :
ORCID :
Scopus :
G. Scholar :
DBLP URL :
|
Documents disponibles écrits par cet auteur (53)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach / Martin Schwartz in Earth System Science Data, vol 15 n° inconnu (2023)
[article]
Titre : FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach Type de document : Article/Communication Auteurs : Martin Schwartz, Auteur ; Philippe Ciais, Auteur ; Aurélien de Truchis, Auteur ; Jérôme Chave, Auteur ; Catherine Ottle, Auteur ; Cédric Vega , Auteur ; Jean-Pierre Wigneron, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] données allométriques
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de surface de la canopée
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) The contribution of forests to carbon storage and biodiversity conservation highlights the need for accurate forest height and biomass mapping and monitoring. In France, forests are managed mainly by private owners and divided into small stands, requiring 10 to 50 m spatial resolution data to be correctly separated. Further, 35 % of the French forest territory is covered by mountains and Mediterranean forests which are managed very extensively. In this work, we used a deep-learning model based on multi-stream remote sensing measurements (NASA’s GEDI LiDAR mission and ESA’s Copernicus Sentinel 1 & 2 satellites) to create a 10 m resolution canopy height map of France for 2020 (FORMS-H). In a second step, with allometric equations fitted to the French National Forest Inventory (NFI) plot data, we created a 30 m resolution above-ground biomass density (AGBD) map (Mg ha-1) of France (FORMS-B). Extensive validation was conducted. First, independent datasets from Airborne Laser Scanning (ALS) and NFI data from thousands of plots reveal a mean absolute error (MAE) of 2.94 m for FORMS-H, which outperforms existing canopy height models. Second, FORMS-B was validated using two independent forest inventory datasets from the Renecofor permanent forest plot network and from the GLORIE forest inventory with MAE of 59.6 Mg ha-1 and 19.6 Mg.ha-1 respectively, providing greater performance than other AGBD products sampled over France. These results highlight the importance of coupling remote sensing technologies with recent advances in computer science to bring material insights to climate-efficient forest management policies. Additionally, our approach is based on open-access data having global coverage and a high spatial and temporal resolution, making the maps reproducible and easily scalable. FORMS products can be accessed from https://doi.org/10.5281/zenodo.7840108 (Schwartz et al., 2023). Numéro de notice : A2023-179 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-2023-196 En ligne : https://doi.org/10.5194/essd-2023-196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103341
in Earth System Science Data > vol 15 n° inconnu (2023)[article]Offering the appetite for the monitoring of European forests a diversified diet / Jean-Daniel Bontemps in Annals of Forest Science, vol 79 n° 1 (2022)
[article]
Titre : Offering the appetite for the monitoring of European forests a diversified diet Type de document : Article/Communication Auteurs : Jean-Daniel Bontemps , Auteur ; Olivier Bouriaud , Auteur ; Cédric Vega , Auteur ; Laura Bouriaud , Auteur Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : n° 19 Note générale : bibliographie
NB article d'opinionLangues : Anglais (eng) Descripteur : [Termes IGN] Europe (géographie politique)
[Termes IGN] intégration
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] politique publique
[Termes IGN] ressources forestières
[Termes IGN] santé des forêts
[Termes IGN] surveillance forestière
[Termes IGN] Union Européenne
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forest monitoring in Europe is turning matter of renewed political concern, and a possible role for ICP Forests health monitoring has been suggested to meet this goal (Ann For Sci 78:94, 2021). Multipurpose national forest inventory (NFI) surveys yet offer a sampling effort by two orders of magnitude greater than ICP level 1, have accomplished substantial methodological and harmonization progresses in the recent years, and therefore form a decisive contributor to future European forest monitoring incentives. Possible paths for the future development of a pan-European, comprehensive and more accurate monitoring are designed that stress a crucial need to build on the assets of the existing forest monitoring programs and favor their cooperation, in order to limit the co-existence of distinct forest monitoring processes. Numéro de notice : A2022-320 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01139-7 Date de publication en ligne : 11/04/2022 En ligne : http://dx.doi.org/10.1186/s13595-022-01139-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100432
in Annals of Forest Science > vol 79 n° 1 (2022) . - n° 19[article]Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information / Shaohui Zhang in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information Type de document : Article/Communication Auteurs : Shaohui Zhang, Auteur ; Cédric Vega , Auteur ; Christine Deleuze, Auteur ; Sylvie Durrieu, Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Jean-Pierre Renaud , Auteur Année de publication : 2022 Projets : ARBRE / AgroParisTech (2007 -) Article en page(s) : n° 103072 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] gestion forestière
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation de la forêt
[Termes IGN] placette d'échantillonnage
[Termes IGN] Sologne (France)
[Termes IGN] variogramme
[Termes IGN] volume en boisRésumé : (auteur) The French National Forest Inventory provides detailed forest information up to large national and regional scales. Forest inventory for small areas of interest within a large population is equally important for decision making, such as for local forest planning and management purposes. However, sampling these small areas with sufficient ground plots is often not cost efficient. In response, small area estimation has gained increasing popularity in forest inventory. It consists of a set of techniques that enables predictions of forest attributes of subpopulation with the help of auxiliary information that compensates for the small field samples. Common sources of auxiliary information usually come from remote sensing technology, such as airborne laser scanning and satellite imagery. The newly launched NASA’s Global Ecosystem Dynamics Investigation (GEDI), a full waveform Lidar instrument, provides an unprecedented opportunity of collecting large-scale and dense forest sample plots given its sampling frequency and spatial coverage. However, the geolocation uncertainty associated with GEDI footprints create important challenges for their use for small area estimations. In this study, we designed a process that provides NFI measurements at plot level with GEDI auxiliary information from nearby footprints. We demonstrated that GEDI RH98 is equivalent to NFI dominant height at plot level. We stressed the importance of pairing NFI plots with nearby GEDI footprints, based on not only the distance in between but also their similarities, i.e., forest heights and forest types. Subsequently, these NFI-GEDI pairs were used for small area estimations following a two-phase sampling scheme. We showcased that, with an adequate sample size, small area estimation with GEDI auxiliary data can improve the accuracy of forest volume estimates. Numéro de notice : A2022-786 Affiliation des auteurs : LIF+Ext (2020- ) Autre URL associée : vers HAL Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.103072 Date de publication en ligne : 22/10/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103072 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101890
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103072[article]Multisource forest inventories: A model-based approach using k-NN to reconcile forest attributes statistics and map products / Ankit Sagar in ISPRS Journal of photogrammetry and remote sensing, vol 192 (October 2022)
[article]
Titre : Multisource forest inventories: A model-based approach using k-NN to reconcile forest attributes statistics and map products Type de document : Article/Communication Auteurs : Ankit Sagar , Auteur ; Cédric Vega , Auteur ; Olivier Bouriaud , Auteur ; Christian Piedallu, Auteur ; Jean-Pierre Renaud , Auteur Année de publication : 2022 Projets : LUE / Université de Lorraine, ARBRE / AgroParisTech (2007 -), DEEPSURF / Pironon, Jacques Article en page(s) : pp 175 - 188 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification barycentrique
[Termes IGN] données allométriques
[Termes IGN] données lidar
[Termes IGN] image Landsat-8
[Termes IGN] inventaire forestier national (données France)
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Forest map products are widely used and have taken benefit from progresses in the multisource forest inventory approaches, which are meant to improve the precision of forest inventory estimates at high spatial resolution. However, estimating errors of pixel-wise predictions remains difficult, and reconciling statistical outcomes with map products is still an open and important question. We address this problem using an original approach relying on a model-based inference framework and k-nearest neighbours (k-NN) models to produce pixel-wise estimations and related quality assessment. Our approach takes advantage of the resampling properties of a model-based estimator and combines it with geometrical convex-hull models to measure respectively the precision and accuracy of pixel predictions. A measure of pixel reliability was obtained by combining precision and accuracy. The study was carried out over a 7,694 km2 area dominated by structurally complex broadleaved forests in centre of France. The targeted forest attributes were growing stock volume, basal area and growing stock volume increment. A total of 819 national forest inventory plots were combined with auxiliary data extracted from a forest map, Landsat 8 images, and 3D point clouds from both airborne laser scanning and digital aerial photogrammetry. k-NN models were built independently for both 3D data sources. Both selected models included 5 auxiliary variables, and were generated using 5 neighbours, and most similar neighbours distance measure. The models showed relative root mean square error ranging from 35.7% (basal area, digital aerial photogrammetry) in calibration to 63.4% (growing stock volume increment, airborne laser scanning) in the validation set. At pixel level, we found that a minimum of 86.4% of the predictions were of high precision as their bootstrapped coefficient of variation fall below calibration’s relative root mean square error. The amount of extrapolation varied from 4.3% (digital aerial photogrammetry) to 6.3% (airborne laser scanning). A relationship was found between extrapolation and k-NN distance, opening new opportunities to correct extrapolation errors. At the population level, airborne laser scanning and digital aerial photogrammetry performed similarly, offering the possibility to use digital aerial photogrammetry for monitoring purposes. The proposed method provided consistent estimates of forest attributes and maps, and also provided spatially explicit information about pixel predictions in terms of precision, accuracy and reliability. The method therefore produced high resolution outputs, significant for either decision making or forest management purposes. Numéro de notice : A2022-629 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.016 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101495
in ISPRS Journal of photogrammetry and remote sensing > vol 192 (October 2022) . - pp 175 - 188[article]Characterizing the calibration domain of remote sensing models using convex hulls / Jean-Pierre Renaud in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
[article]
Titre : Characterizing the calibration domain of remote sensing models using convex hulls Type de document : Article/Communication Auteurs : Jean-Pierre Renaud , Auteur ; Ankit Sagar , Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Christine Deleuze, Auteur ; Cédric Vega , Auteur Année de publication : 2022 Projets : DEEPSURF / Pironon, Jacques, ARBRE / AgroParisTech (2007 -) Article en page(s) : n° 102939 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] données allométriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] erreur systématique
[Termes IGN] étalonnage de modèle
[Termes IGN] étalonnage des données
[Termes IGN] extrapolation
[Termes IGN] placette d'échantillonnageRésumé : (auteur) The ever-increasing availability of remote sensing data allows production of forest attributes maps, which are usually made using model-based approaches. These map products are sensitive to various bias sources, including model extrapolation. To identify, over a case study forest, the proportion of extrapolated predictions, we used a convex hull method applied to the auxiliary data space of an airborne laser scanning (ALS) flight. The impact of different sampling efforts was also evaluated. This was done by iteratively thinning a set of 487 systematic plots using nested sub-grids allowing to divide the sample by two at each level. The analysis were conducted for all alternative samples and evaluated against 56 independent validation plots. Residuals of the extrapolated validation plots were computed and examined as a function of their distance to the model calibration domain. Extrapolation was also characterized for the pixels of the area of interest (AOI) to upscale at population level. Results showed that the proportion of extrapolated pixels greatly reduced with an increasing sampling effort. It reached a plateau (ca. 20% extrapolation) with a sampling intensity of ca. 250-calibration plots. This contrasts with results on model’s root mean squared error (RMSE), which reached a plateau at a much lower sampling intensity. This result emphasizes the fact that with a low sampling effort, extrapolation risk remains high, even at a relatively low RMSE. For all attributes examined (i.e., stand density, basal area, and quadratic mean diameter) estimations were generally found to be biased for validation plots that were extrapolated. The method allows an easy identification of map pixels that are out of the calibration domain, making it an interesting tool to evaluate model transferability over an area of interest (AOI). It could also serve to compare “competing” models at a variable selection phase. From a model calibration perspective, it could serve a posteriori, to evaluate areas (in the auxiliary space) that merit further sampling efforts to improve model reliability. Numéro de notice : A2022-581 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.102939 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102939 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101341
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102939[article]High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach / Martin Schwartz (2022)PermalinkA new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)PermalinkConvex hull: another perspective about model predictions and map derivatives from remote sensing data / Jean-Pierre Renaud (2021)PermalinkEstimation et cartographie d’attributs forestiers haute résolution : Le potentiel des approches multisource / Cédric Vega (2021)PermalinkHigh resolution mapping of forest resources and prediction reliability using multisource inventory approach / Ankit Sagar (2021)PermalinkImproving GEDI footprint geolocation using a high resolution digital terrain model / Anouk Schleich (2021)PermalinkUnit-level small area estimation of forest inventory with GEDI auxiliary information / Shaohui Zhang (2021)PermalinkUnit-level small area estimation of forest inventory with GEDI auxiliary information in France / Shaohui Zhang (2021)PermalinkIncreasing precision for French forest inventory estimates using the k-NN technique with optical and photogrammetric data and model-assisted estimators / Dinesh Babu Irulappa-Pillai-Vijayakumar in Remote sensing, vol 11 n° 8 (August 2019)PermalinkComparison of three algorithms to estimate tree stem diameter from terrestrial laser scanner data / Joris Ravaglia in Forests, vol 10 n° 7 (July 2019)Permalink