Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 72 n° 2Paru le : 01/02/2006 ISBN/ISSN/EAN : 0099-1112 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierIncorporating remote sensing information in modelling house values: a regression tree approach / D. Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 72 n° 2 (February 2006)
[article]
Titre : Incorporating remote sensing information in modelling house values: a regression tree approach Type de document : Article/Communication Auteurs : D. Yu, Auteur ; C. Wu, Auteur Année de publication : 2006 Article en page(s) : pp 129 - 138 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de la valeur
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] bati
[Termes IGN] coefficient de corrélation
[Termes IGN] erreur moyenne arithmétique
[Termes IGN] habitat (urbanisme)
[Termes IGN] image Landsat-ETM+
[Termes IGN] Milwaukee
[Termes IGN] régression linéaire
[Termes IGN] zone urbaineRésumé : (Auteur) This paper explores the possibility of incorporating remote sensing information in modeling house values in the City of Milwaukee, Wisconsin, U.S.A. In particular, a Landsat ETM+ image was utilized to derive environmental characteristics, including the fractions of vegetation, impervious surface, and soil, with a linear spectral mixture analysis approach. These environmental characteristics, together with house structural attributes, were integrated to house value models. Two modeling techniques, a global OLS regression and a regression tree approach, were employed to build the relationship between house values and house structural and environmental characteristics. Analysis of results indicates that environmental characteristics generated from remote sensing technologies have strong influences on house values, and the addition of them improves house value modeling performance significantly. Moreover, the regression tree model proves as a better alternative to the OLS regression models in terms of predicting accuracy. In particular, based on the testing dataset, the mean average error (MAE) and relative error (RE) dropped from 0.202 and 0.434 for the OLS model to 0.134 and 0.280 for the regression tree model, while the correlation coefficient between the predicted and observed values increased from 0.903 to 0.960. Further, as a nonparametric and local model, the regression tree method alleviates the problems with the OLS techniques and provides a means in delineating urban housing submarkets. Numéro de notice : A2006-037 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.14358/PERS.72.2.129 En ligne : https://doi.org/10.14358/PERS.72.2.129 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27764
in Photogrammetric Engineering & Remote Sensing, PERS > vol 72 n° 2 (February 2006) . - pp 129 - 138[article]Comparison of automated watershed delineations: effects on land cover areas, percentages, and relationships to nutrient discharges / M.E. Baker in Photogrammetric Engineering & Remote Sensing, PERS, vol 72 n° 2 (February 2006)
[article]
Titre : Comparison of automated watershed delineations: effects on land cover areas, percentages, and relationships to nutrient discharges Type de document : Article/Communication Auteurs : M.E. Baker, Auteur ; D.E. Weller, Auteur ; T.E. Jordan, Auteur Année de publication : 2006 Article en page(s) : pp 159 - 168 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse comparative
[Termes IGN] automatisation
[Termes IGN] bassin hydrographique
[Termes IGN] Chesapeake (baie de)
[Termes IGN] détection de contours
[Termes IGN] modèle numérique de surface
[Termes IGN] nitrate
[Termes IGN] occupation du sol
[Termes IGN] parcelle agricole
[Termes IGN] sédimentRésumé : (Auteur) We compared manual delineations with those derived from ten automated delineations of 420 watersheds in four physiographic provinces of the Chesapeake Basin. Automated methods included commercial DEM-based routines and different parameterizations of four enhanced methods: stream burning, normalized excavation, surface reconditioning, and normalized reconditioning. Un-enhanced methods resulted in individual watershed boundaries with some gross discrepancies in watershed size relative to manual delineations (error rate of 0.22 > 25 percent difference compared to manual) and significantly different watershed size distributions (Mann-Whitney U p = 0.012). Integrating mapped streams through enhanced methods substantially improved correspondence with manual watersheds (error rates of only 0.08-0.02 > 25 percent difference). Analysis of cropland area among methods showed a significant difference between manual estimates and un-enhanced estimates (p = 0.049) that was corrected using enhanced algorithms. Subsequent analysis of percent cropland revealed that measurements of land cover proportions were not always affected by delineation errors. However, differences were large enough to influence regressions with stream nitrate-N at the 90 percent confidence level within one physiographic province. Enhanced delineations produced statistical relationships between percent cropland and nitrate-N concentrations consistent with manual delineations. The results provide support for enhanced automated watershed delineation within the Chesapeake Basin and suggest that normalized excavation can be an effective augmentation of existing stream burning and reconditioning procedures. Numéro de notice : A2006-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.72.2.159 En ligne : https://doi.org/10.14358/PERS.72.2.159 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27765
in Photogrammetric Engineering & Remote Sensing, PERS > vol 72 n° 2 (February 2006) . - pp 159 - 168[article]