Détail de l'auteur
Auteur Taskin Kavzoglu |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Artificial neural networks and evolutionary computation in remote sensing Type de document : Monographie Auteurs : Taskin Kavzoglu, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 256 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-03943-828-0 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] image satellite
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation sémantiqueRésumé : (éditeur) Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification. Note de contenu : 1- CloudScout: A deep neural network for on-board cloud detection on hyperspectral images
2- Machine learning classification ensemble of multitemporal Sentinel-2 images: The case of a mixed Mediterranean ecosystem
3- Computer vision and deep learning techniques for the analysis of drone-acquired forest images, a transfer learning study
4- Improved SRGAN for remote sensing image super-resolution across locations and sensors
5- Design of feedforward neural networks in the classification of hyperspectral imagery using superstructural optimization
6- Deep quadruplet network for hyperspectral image classification with a small number of samples
7- Mapping the topographic features of mining-related Valley Fills using mask R-CNN deep learning and digital elevation data
8- Improved winter wheat spatial distribution extraction from high-resolution remote sensing imagery using semantic features and statistical analysis
9- Comparative research on deep learning approaches for airplane detection from very high-resolution satellite images
10- A coarse-to-fine network for ship detection in optical remote sensing images
11- Improved remote sensing image classification based on multi-scale feature fusionNuméro de notice : 28443 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-03943-828-0 En ligne : https://doi.org/10.3390/books978-3-03943-828-0 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98893 Semi-automatic building extraction from WorldView-2 imagery using taguchi optimization / Hasan Tonbul in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
[article]
Titre : Semi-automatic building extraction from WorldView-2 imagery using taguchi optimization Type de document : Article/Communication Auteurs : Hasan Tonbul, Auteur ; Taskin Kavzoglu, Auteur Année de publication : 2020 Article en page(s) : pp 547-555 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de variance
[Termes IGN] carte d'occupation du sol
[Termes IGN] détection du bâti
[Termes IGN] extraction semi-automatique
[Termes IGN] image Worldview
[Termes IGN] optimisation (mathématiques)
[Termes IGN] rapport signal sur bruit
[Termes IGN] régression linéaire
[Termes IGN] segmentation multi-échelle
[Termes IGN] séparateur à vaste margeRésumé : (Auteur) Due to the complex spectral and spatial structures of remotely sensed images, the delineation of land use/land cover classes using conventional approaches is a challenging task. This article tackles the problem of seeking optimal parameters of multi-resolution segmentation for a classification task using WorldView-2 imagery. Taguchi optimization was applied to search optimal parameters using the plateau objective function (POF) and quality rate (Qr) as fitness criteria. Analysis of variance was also used to estimate the contributions of the parameters for POF and Qr, separately. The scale parameter was the most effective one, with contribution levels of 87.45% and 56.87% for POF and Qr, respectively. Linear regression and support-vector regression methods were used to predict the results of the experiment. Test results revealed that Taguchi optimization was more effective than linear regression and support-vector regression for predicting POF and Qr values. Numéro de notice : A2020-490 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.9.547 Date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.14358/PERS.86.9.547 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95931
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 9 (September 2020) . - pp 547-555[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020091 SL Revue Centre de documentation Revues en salle Disponible Classification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery / H. Tombul in Journal of geodetic science, vol 10 n° 1 (January 2020)
[article]
Titre : Classification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery Type de document : Article/Communication Auteurs : H. Tombul, Auteur ; Ismail Colkesen, Auteur ; Taskin Kavzoglu, Auteur Année de publication : 2020 Article en page(s) : pp 14 - 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse canonique
[Termes IGN] analyse comparative
[Termes IGN] bande spectrale
[Termes IGN] boosting adapté
[Termes IGN] carte de la végétation
[Termes IGN] carte thématique
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Sentinel-MSI
[Termes IGN] jeu de données
[Termes IGN] Populus (genre)
[Termes IGN] précision de la classification
[Termes IGN] Rotation Forest classification
[Termes IGN] segmentation multi-échelle
[Termes IGN] TurquieRésumé : (auteur) The poplar species in the forest ecosystems are one of the most valuable and beneficial species for the society and environment. Conventional methods require high cost, time and labor need, and the results obtained vary and are insu˚cient in terms of achieved accuracy level. Determination of poplar cultivated fields and mapping of their spatial sites play a vital role for decision-makers and planners to enhance the economic and ecological value of poplar trees. The study aims to map Poplar (P. deltoides) cultivated areas in Akyazi district of Sakarya, Turkey province using various combinations of the Sentinel-2A image bands. For this purpose, object-based classification based on multi-resolution segmentation algorithm was utilized to produce image objects and ensemble learning algorithms, namely, Adaboost (AdaB), Random Forest (RF), Rotation Forest (RotFor) and Canonical correlation forest (CCF) were applied to produce thematic maps. In order to analyze the effects of the spectral bands of the Sentinel-2A image on the object-based classification performance, three datasets consisting of different spectral band combinations (i.e. four 10 m bands, six 20 m bands and ten 10m pan-sharpened bands) were used. The results showed that the RotFor and CCF classifiers produced superior classification performances compared to the AdaB and RF classifiers for the band combinations regarded in this study. Moreover, it was found that determination of poplar tree class level accuracy reached to ~94% in terms of F-score. It was also observed that the inclusion of the six spectral bands at 20 m resolution resulted in a noteworthy increase in classification accuracy (up to 6%) compared to single 10m band combination. Numéro de notice : A2020-420 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2020-0003 Date de publication en ligne : 04/05/2020 En ligne : https://doi.org/10.1515/jogs-2020-0003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95477
in Journal of geodetic science > vol 10 n° 1 (January 2020) . - pp 14 - 22[article]Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping / Emrehan Kutlug Sahin in Geocarto international, vol 32 n° 9 (September 2017)
[article]
Titre : Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Emrehan Kutlug Sahin, Auteur ; Cengizhan Ipbuker, Auteur ; Taskin Kavzoglu, Auteur Année de publication : 2017 Article en page(s) : pp 956 - 977 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse comparative
[Termes IGN] cartographie des risques
[Termes IGN] distribution de Fisher
[Termes IGN] effondrement de terrain
[Termes IGN] khi carré
[Termes IGN] pondération
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] risque naturel
[Termes IGN] surveillance géologique
[Termes IGN] test de performance
[Termes IGN] vulnérabilitéRésumé : (Auteur) In landslide susceptibility mapping, factor weights have been usually determined by expert judgements. A novel methodology for weighting landslide causative factors by integrating statistical feature weighting algorithms was proposed. The primary focus of this study is to investigate the effectiveness of automatic feature weighting algorithms, namely Fisher, Chi-square and Relief-F algorithms. Analytic hierarchy process (AHP) method was used as a benchmark method to compare the performances of the weighting algorithms. All weighted factors were tested using factor-weighted overlay method, and quality of these maps was assessed using overall accuracy, area under the ROC curve (AUC) and success rate curve. In addition, Wilcoxon’s signed-rank test was applied to evaluate statistical differences between both estimated overall accuracies and AUCs, respectively. Results showed that the weights determined by feature weighting methods outperformed the conventional AHP method by about 6% and this level of differences was found to be statistically significant. Numéro de notice : A2017-458 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1170892 Date de publication en ligne : 11/04/2016 En ligne : http://dx.doi.org/10.1080/10106049.2016.1170892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86383
in Geocarto international > vol 32 n° 9 (September 2017) . - pp 956 - 977[article]The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery / Ismail Colkesen in Geocarto international, vol 32 n° 1 (January 2017)
[article]
Titre : The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery Type de document : Article/Communication Auteurs : Ismail Colkesen, Auteur ; Taskin Kavzoglu, Auteur Année de publication : 2017 Article en page(s) : pp 71 - 86 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] arbre de décision
[Termes IGN] classification orientée objet
[Termes IGN] classification par arbre de décision
[Termes IGN] classification pixellaire
[Termes IGN] image Worldview
[Termes IGN] régression logistiqueRésumé : (auteur) Logistic model tree (LMT), a new method integrating standard decision tree (DT) induction and linear logistic regression algorithm in a single tree, have been recently proposed as an alternative to DT-based learning algorithms. In this study, the LMT was applied in the context of pixel- and object-based classifications using high-resolution WorldView-2 imagery, and its performance was compared with C4.5, random forest and Adaboost. Results of the study showed that the LMT generally produced more accurate classification results than the other methods for both pixel- and object-based classifications. The improvement in classification accuracy reached to 3% in pixel-based and 5% in object-based classifications. It was also estimated that the LMT algorithm produced the most accurate results considering the allocation and overall disagreement errors. Based on the Wilcoxon’s Signed-Ranks tests, the performance differences between the LMT and the other methods were statistically significant for both pixel- and object-based image classifications. Numéro de notice : A2017-085 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2015.1128486 Date de publication en ligne : 12/01/2016 En ligne : http://dx.doi.org/10.1080/10106049.2015.1128486 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84410
in Geocarto international > vol 32 n° 1 (January 2017) . - pp 71 - 86[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2017011 RAB Revue Centre de documentation En réserve L003 Disponible Mapping urban road infrastructure using remotely sensed images / Taskin Kavzoglu in International Journal of Remote Sensing IJRS, vol 30 n° 7 (April 2009)Permalink