Détail de l'auteur
Auteur V. Baramidze |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Triangulated spherical splines for geopotential reconstruction / M.J. Lai in Journal of geodesy, vol 83 n° 8 (August 2009)
[article]
Titre : Triangulated spherical splines for geopotential reconstruction Type de document : Article/Communication Auteurs : M.J. Lai, Auteur ; C.K. Shum, Auteur ; V. Baramidze, Auteur ; P. Wenston, Auteur Année de publication : 2009 Article en page(s) : pp 695 - 708 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur local
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] Earth Gravity Model 1996
[Termes IGN] équation de Laplace
[Termes IGN] fonction spline
[Termes IGN] fonction spline d'interpolation
[Termes IGN] modèle de géopotentiel
[Termes IGN] potentiel de pesanteur terrestreRésumé : (Auteur) We present an alternate mathematical technique than contemporary spherical harmonics to approximate the geopotential based on triangulated spherical spline functions, which are smooth piecewise spherical harmonic polynomials over spherical triangulations. The new method is capable of multi-spatial resolution modeling and could thus enhance spatial resolutions for regional gravity field inversion using data from space gravimetry missions such as CHAMP, GRACE or GOCE. First, we propose to use the minimal energy spherical spline interpolation to find a good approximation of the geopotential at the orbital altitude of the satellite. Then we explain how to solve Laplace’s equation on the Earth’s exterior to compute a spherical spline to approximate the geopotential at the Earth’s surface. We propose a domain decomposition technique, which can compute an approximation of the minimal energy spherical spline interpolation on the orbital altitude and a multiple star technique to compute the spherical spline approximation by the collocation method. We prove that the spherical spline constructed by means of the domain decomposition technique converges to the minimal energy spline interpolation. We also prove that the modeled spline geopotential is continuous from the satellite altitude down to the Earth’s surface. We have implemented the two computational algorithms and applied them in a numerical experiment using simulated CHAMP geopotential observations computed at satellite altitude (450 km) assuming EGM96 (n max = 90) is the truth model. We then validate our approach by comparing the computed geopotential values using the resulting spherical spline model down to the Earth’s surface, with the truth EGM96 values over several study regions. Our numerical evidence demonstrates that the algorithms produce a viable alternative of regional gravity field solution potentially exploiting the full accuracy of data from space gravimetry missions. The major advantage of our method is that it allows us to compute the geopotential over the regions of interest as well as enhancing the spatial resolution commensurable with the characteristics of satellite coverage, which could not be done using a global spherical harmonic representation. Copyright Springer Numéro de notice : A2009-323 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-008-0283-0 En ligne : https://doi.org/10.1007/s00190-008-0283-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29953
in Journal of geodesy > vol 83 n° 8 (August 2009) . - pp 695 - 708[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-09071 SL Revue Centre de documentation Revues en salle Disponible