Détail de l'autorité
ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives
nom du congrès :
ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow
début du congrès :
06/06/2022
fin du congrès :
11/06/2022
ville du congrès :
Nice
pays du congrès :
France
site des actes du congrès :
|
Documents disponibles (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : A 3D segments based algorithm for heterogeneous data registration Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Pascal Monasse, Auteur ; Bruno Vallet , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Projets : 1-Pas de projet / Conférence : ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 129 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme du recuit simulé
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] orthoimage
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] segment de droite
[Termes IGN] superposition de donnéesRésumé : (auteur) Combining image and LiDAR draws increasing interest in surface reconstruction, city and building modeling for constructing 3D virtual reality models because of their complementary nature. However, to gain from this complementarity, these data sources must be precisely registered. In this paper, we propose a new primitive based registration algorithm that takes 3D segments as features. The objective of the proposed algorithm is to register heterogeneous data. The heterogeneity is both in data type (image and LiDAR) and acquisition platform (terrestrial and aerial). Our algorithm starts by extracting 3D segments from LiDAR and image data with state of the art algorithms. Then it clusters the 3D segments of each data according to their directions. The obtained clusters are associated to find possible rotations, then 3D segments from associated clusters are matched in order to find the translation and scale factor minimizing a distance criteria between the two sets of 3D segments. Two optimizers (simulated annealing and RANSAC) are tested to minimize this distance criterion, first on synthetic data, then on real data. The experiments carried out demonstrate the robustness and speed of RANSAC compared to simulated annealing. Numéro de notice : C2022-018 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-129-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-129-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100844
Titre : Detecting openings for indoor/outdoor registration Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Bruno Vallet , Auteur ; Pascal Monasse, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Projets : 1-Pas de projet / Conférence : ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 177 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] lancer de rayons
[Termes IGN] ouverture (bâtiment)
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segment de droite
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) Indoor/Outdoor modeling of buildings is an important issue in the field of building life cycle management. It is seen as a joint process where the two aspects collaborate to take advantage of their semantic and geometric complementary. This global approach will allow a more complete, correct, precise and coherent reconstruction of the buildings. The first issue of such modeling is thus to precisely register this data. The lack of overlap between indoor and outdoor data is the most encountered obstacle, more so when both data sets are acquired separately and using different types of sensors. As an opening in the façade is the unique common entity that can be seen from inside and outside, it can help the registration of indoor and outdoor point clouds. So it must be automatically, accurately and efficiently extracted. In this paper, we start by proposing a very efficient algorithm to detect openings with great precision in both indoor and outdoor scans. Afterwards, we integrate them in a registration framework. As an opening is defined by a rectangular shape composed of four segments, two horizontal and two vertical, we can write our registration problem as a minimization of a global robust distance between two segment sets and propose a robust approach to minimize this distance using the RANSAC paradigm. Numéro de notice : C2022-023 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-177-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-177-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100849
Titre : Preface: the 2022 edition of the XXIVth ISPRS congress Type de document : Article/Communication Auteurs : Loïc Landrieu , Auteur ; Ewelina Rupnik , Auteur ; Sander J. Oude Elberink, Auteur ; Clément Mallet , Auteur ; Nicolas Paparoditis , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B Conférence : ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : 5 p. Format : 21 x 30 cm Langues : Anglais (eng) Résumé : (auteur) [introduction] We report key elements and figures related to the proceedings of the 2022 edition of the XXIVth ISPRS Congress. Despite the uncertainty and turmoil caused by the COVID-19 pandemic, the 2022 edition of the Congress is going to take place in person in Nice (France, 6-11 June 2022) and online, with a significant expected turnout: 1,600 participants have registered including 300 online participation as of April 25. The dynamic and unpredictable global health situation makes it difficult to predict participation. Numéro de notice : C2022-014 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B5-2022-1-2022 Date de publication en ligne : 30/05/2022 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-1-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100840 Robust approach for urban road surface extraction using mobile laser scanning 3D point clouds / Abdul Nurunnabi (2022)
Titre : Robust approach for urban road surface extraction using mobile laser scanning 3D point clouds Type de document : Article/Communication Auteurs : Abdul Nurunnabi, Auteur ; Felix Norman Teferle, Auteur ; Roderik Lindenbergh, Auteur ; J. Li, Auteur ; Sisi Zlatanova, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Conférence : ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 59 - 66 Note générale : bibliographie
This study is supported by the Project 2019-05-030-24, SOLSTICE - Programme Fonds Européen de Développment Régional (FEDER)/Ministère de l’Economie of the G. D. of LuxembourgLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de couche
[Termes IGN] méthode robuste
[Termes IGN] navigation autonome
[Termes IGN] régression
[Termes IGN] réseau routier
[Termes IGN] sécurité routière
[Termes IGN] semis de points
[Termes IGN] véhicule sans piloteRésumé : (auteur) Road surface extraction is crucial for 3D city analysis. Mobile laser scanning (MLS) is the most appropriate data acquisition system for the road environment because of its efficient vehicle-based on-road scanning opportunity. Many methods are available for road pavement, curb and roadside way extraction. Most of them use classical approaches that do not mitigate problems caused by the presence of noise and outliers. In practice, however, laser scanning point clouds are not free from noise and outliers, and it is apparent that the presence of a very small portion of outliers and noise can produce unreliable and non-robust results. A road surface usually consists of three key parts: road pavement, curb and roadside way. This paper investigates the problem of road surface extraction in the presence of noise and outliers, and proposes a robust algorithm for road pavement, curb, road divider/islands, and roadside way extraction using MLS point clouds. The proposed algorithm employs robust statistical approaches to remove the consequences of the presence of noise and outliers. It consists of five sequential steps for road ground and non-ground surface separation, and road related components determination. Demonstration on two different MLS data sets shows that the new algorithm is efficient for road surface extraction and for classifying road pavement, curb, road divider/island and roadside way. The success can be rated in one experiment in this paper, where we extract curb points; the results achieve 97.28%, 100% and 0.986 of precision, recall and Matthews correlation coefficient, respectively. Numéro de notice : C2022-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-59-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-59-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100845