Détail de l'auteur
Auteur K. Gunson |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-scale spatiotemporal analyses of moose-vehicle collisions: a case study in northern Vermont / Giorgos Mountrakis in International journal of geographical information science IJGIS, vol 23 n°11-12 (november 2009)
[article]
Titre : Multi-scale spatiotemporal analyses of moose-vehicle collisions: a case study in northern Vermont Type de document : Article/Communication Auteurs : Giorgos Mountrakis, Auteur ; K. Gunson, Auteur Année de publication : 2009 Article en page(s) : pp 1389 - 1412 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accident de la route
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Cervidae
[Termes IGN] estimation par noyau
[Termes IGN] Mammalia
[Termes IGN] outil d'aide à la décision
[Termes IGN] trafic routier
[Termes IGN] véhicule automobile
[Termes IGN] Vermont (Etats-Unis)Résumé : (Auteur) Moose-vehicle collisions (MVCs) pose a serious safety and environmental concern in many regions of Europe and North America. For example, in the state of Vermont, one-third of all reported MVCs resulted in motorist injury or fatality while collisions have increased from two in 1982 to 164 in 2002. Our work used a MVC dataset from 1983 to 1999 in the Northeastern Highlands of Vermont (four major roads) to perform space, time and spatiotemporal analyses and guide future mitigation strategies. An adapted kernel density estimator was implemented for exploratory analyses to detect high density collision hotspots on roads. The kernel in space showed seven major density peaks which varied in magnitude and spread between roads. The kernel estimator in time for all roads showed an exponentially increasing trend with annual periodicity and a seasonal cyclic component, where the majority of collisions occurred from May to October. Spatiotemporal kernel estimation exhibited discontinuous density hotspots in time and space suggesting changing animal movement patterns across roads. We used an adapted Ripley's K-function to test the hypothesis that MVCs clustering occurred at multiple scales in space, in time and in space-time combined. Statistically significant spatial clustering was evident on all roads at spatial scales from 2 to 10 km. A more consistent clustering in time occurred on all roads at a scale distance of 5 years. Similar to the kernel estimation, annual periodicity was also evident. Positive space-time clustering was present at small spatial (5 km) and temporal scales (2 years) indicating that where MVCs occur is also influenced by when they occur. In retrospect, using multiple road lengths, and the combined kernel estimation and Ripley's K-function in time and space, provided a powerful methodology to study varying spatiotemporal patterns of wildlife collisions along roads. This can greatly assist transportation planners in identifying optimal mitigation strategies along specific roads, such as deciding on location and spatial length for permanent and expensive measures (e.g. crossing structures and associated fencing) versus less permanent and inexpensive structures (e.g. wildlife signage and reduced speed limits). Copyright Taylor & Francis Numéro de notice : A2009-513 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658810802406132 En ligne : https://doi.org/10.1080/13658810802406132 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30142
in International journal of geographical information science IJGIS > vol 23 n°11-12 (november 2009) . - pp 1389 - 1412[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-09071 RAB Revue Centre de documentation En réserve L003 Disponible 079-09072 RAB Revue Centre de documentation En réserve L003 Disponible