Détail de l'auteur
Auteur R. Tay |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Support vector machines for urban growth modeling / B. Huang in Geoinformatica, vol 14 n° 1 (January 2010)
[article]
Titre : Support vector machines for urban growth modeling Type de document : Article/Communication Auteurs : B. Huang, Auteur ; C. Xie, Auteur ; R. Tay, Auteur Année de publication : 2010 Article en page(s) : pp 83 - 99 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] Delaware (Etats-Unis)
[Termes IGN] modèle de simulation
[Termes IGN] régression logistique
[Termes IGN] utilisation du solRésumé : (Auteur) This paper presents a novel method to model urban land use conversion using support vector machines (SVMs), a new generation of machine learning algorithms used in the classification and regression domains. This method derives the relationship between rural-urban land use change and various factors, such as population, distance to road and facilities, and surrounding land use. Our study showed that SVMs are an effective approach to estimating the land use conversion model, owing to their ability to model non-linear relationships, good generalization performance, and achievement of a global and unique optimum. The rural-urban land use conversions of New Castle County, Delaware between 1984-1992, 1992-1997, and 1997-2002 were used as a case study to demonstrate the applicability of SVMs to urban expansion modeling. The performance of SVMs was also compared with a commonly used binomial logistic regression (BLR) model, and the results, in terms of the overall modeling accuracy and McNamara's test, consistently corroborated the better performance of SVMs. Copyright Springer Numéro de notice : A2010-012 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-009-0077-4 Date de publication en ligne : 25/02/2009 En ligne : https://doi.org/10.1007/s10707-009-0077-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30208
in Geoinformatica > vol 14 n° 1 (January 2010) . - pp 83 - 99[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2010011 RAB Revue Centre de documentation En réserve L003 Disponible