Détail de l'auteur
Auteur H. Imura |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Consistency of accuracy assessment indices for soft classification: simulation analysis / J. Chen in ISPRS Journal of photogrammetry and remote sensing, vol 65 n° 2 (March - April 2010)
[article]
Titre : Consistency of accuracy assessment indices for soft classification: simulation analysis Type de document : Article/Communication Auteurs : J. Chen, Auteur ; X. Zhu, Auteur ; H. Imura, Auteur ; X. Chen, Auteur Année de publication : 2010 Article en page(s) : pp 156 - 164 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] classification
[Termes IGN] erreur moyenne quadratique
[Termes IGN] estimation de précision
[Termes IGN] Kappa de Cohen
[Termes IGN] matrice de confusion
[Termes IGN] niveau d'analyse
[Termes IGN] précision cartographique
[Termes IGN] précision décimétrique
[Termes IGN] simulationRésumé : (Auteur) Accuracy assessment plays a crucial role in the implementation of soft classification. Even though many indices of accuracy assessment for soft classification have been proposed, the consistencies among these indices are not clear, and the impact of sample size on these consistencies has not been investigated. This paper examines two kinds of indices: map-level indices, including root mean square error (rmse), kappa, and overall accuracy (oa) from the sub-pixel confusion matrix (SCM); and category-level indices, including crmse, user accuracy (ua) and producer accuracy (pa). A careful simulation was conducted to investigate the consistency of these indices and the effect of sample size. The major findings were as follows: (1) The map-level indices are highly consistent with each other, whereas the category-level indices are not. (2) The consistency among map-level and category-level indices becomes weaker when the sample size decreases. (3) The rmse is more affected by error distribution among classes than are kappa and oa. Based on these results, we recommend that rmse can be used for map-level accuracy due to its simplicity, although kappa and oa may be better alternatives when the sample size is limited because the two indices are affected less by the error distribution among classes. We also suggest that crmse should be provided when map users are not concerned about the error source, whereas ua and pa are more useful when the complete information about different errors is required. The results of this study will be of benefit to the development and application of soft classifiers. Copyright ISPRS Numéro de notice : A2010-090 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2009.10.003 En ligne : https://doi.org/10.1016/j.isprsjprs.2009.10.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30286
in ISPRS Journal of photogrammetry and remote sensing > vol 65 n° 2 (March - April 2010) . - pp 156 - 164[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2010021 SL Revue Centre de documentation Revues en salle Disponible