Détail de l'auteur
Auteur M. Joliveau |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Managing sensor traffic data and forecasting unusual behaviour propagation / C. Bauzer Medeiros in Geoinformatica, vol 14 n° 3 (July 2010)
[article]
Titre : Managing sensor traffic data and forecasting unusual behaviour propagation Type de document : Article/Communication Auteurs : C. Bauzer Medeiros, Auteur ; M. Joliveau, Auteur ; Geneviève Jomier, Auteur ; F. De Vuyst, Auteur Année de publication : 2010 Article en page(s) : pp 279 - 305 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] base de données spatiotemporelles
[Termes IGN] comportement
[Termes IGN] données multicapteurs
[Termes IGN] réseau de capteurs
[Termes IGN] trafic routier
[Termes IGN] traitement de données localiséesRésumé : (Auteur) Sensor data on traffic events have prompted a wide range of research issues, related with the so-called ITS (Intelligent Transportation Systems). Data are delivered for both static (fixed) and mobile (embedded) sensors, generating large and complex spatio-temporal series. This scenario presents several research challenges, in spatio-temporal data management and data analysis. Management issues involve, for instance, data cleaning and data fusion to support queries at distinct spatial and temporal granularities. Analysis issues include the characterization of traffic behavior for given space and/or time windows, and detection of anomalous behavior (either due to sensor malfunction, or to traffic events). This paper contributes to the solution of some of these issues through a new kind of framework to manage static sensor data. Our work is based on combining research on analytical methods to process sensor data, and data management strategies to query these data. The first aspect is geared towards supporting pattern matching. This leads to a model to study and predict unusual traffic behavior along an urban road network. The second aspect deals with spatio-temporal database issues, taking into account information produced by the model. This allows distinct granularities and modalities of analysis of sensor data in space and time. This work was conducted within a project that uses real data, with tests conducted on 1,000 sensors, during 3 years, in a large French city. Copyright Springer Numéro de notice : A2010-102 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article DOI : 10.1007/s10707-010-0102-7 Date de publication en ligne : 28/01/2010 En ligne : https://doi.org/10.1007/s10707-010-0102-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30298
in Geoinformatica > vol 14 n° 3 (July 2010) . - pp 279 - 305[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2010031 RAB Revue Centre de documentation En réserve L003 Disponible