Détail de l'auteur
Auteur A. Huck |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data / A. Huck in IEEE Transactions on geoscience and remote sensing, vol 48 n° 6 (June 2010)
[article]
Titre : Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data Type de document : Article/Communication Auteurs : A. Huck, Auteur ; M. Guillaume, Auteur ; J. Blanc-Talon, Auteur Année de publication : 2010 Article en page(s) : pp 2590 - 2602 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] factorisation
[Termes IGN] image hyperspectraleRésumé : (Auteur) This paper considers the problem of unsupervised spectral unmixing for hyperspectral image analysis. Each observed pixel is assumed to be a noisy linear mixture of pure material spectra, namely, endmembers. The mixing coefficients, usually called abundances, are constrained to positive and summed to unity. The proposed unmixing approach is based on the nonnegative matrix factorization (NMF) framework, which considers the physical constraints of the problem, including the positivity of the endmember spectra and abundances. However, the basic NMF formulation has degenerated solutions and suffers from nonconvexity limitations. We consider here a regularization function, called dispersion, which favors the solution such that the endmember spectra have minimum variances. Such a solution encourages the recovered spectra to be flat, preserving the possible spectral singularities (peaks and sharp variations). The regularized criterion is minimized with a projected gradient (PG) scheme, and we propose a new step-size estimation technique to fasten the PG convergence. The derived algorithm is called MiniDisCo, for minimum dispersion constrained NMF. We experimentally compare MiniDisCo with the recently proposed algorithm. It is shown to be particularly robust to the presence of flat spectra, to a possible a priori overestimation of the number of endmembers, or if the amount of observed spectral pixels is low. In addition, experiments show that the considered regularization correctly overcomes the degeneracy and nonconvexity problems, leading to satisfactory unmixing accuracy. We include a comparative analysis of a real-world scene. Numéro de notice : A2010-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2009.2038483 En ligne : https://doi.org/10.1109/TGRS.2009.2038483 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30387
in IEEE Transactions on geoscience and remote sensing > vol 48 n° 6 (June 2010) . - pp 2590 - 2602[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 065-2010061 RAB Revue Centre de documentation En réserve L003 Disponible 065-2010062 RAB Revue Centre de documentation En réserve L003 Disponible