Détail de l'auteur
Auteur J. Herrick |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Acquisition, orthorectification, and object-based classification of Unmanned Aerial Vehicle (UAV) imagery for rangeland monitoring / A. Laliberte in Photogrammetric Engineering & Remote Sensing, PERS, vol 76 n° 6 (June 2010)
[article]
Titre : Acquisition, orthorectification, and object-based classification of Unmanned Aerial Vehicle (UAV) imagery for rangeland monitoring Type de document : Article/Communication Auteurs : A. Laliberte, Auteur ; J. Herrick, Auteur ; A. Rango, Auteur ; C. Winters, Auteur Année de publication : 2010 Article en page(s) : pp 661 - 672 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] acquisition d'images
[Termes IGN] classification orientée objet
[Termes IGN] drone
[Termes IGN] Idaho (Etats-Unis)
[Termes IGN] image aérienne
[Termes IGN] orthorectification
[Termes IGN] parcoursRésumé : (Auteur) The use of unmanned aerial vehicles (UAVs) for natural resource applications has increased considerably in recent years due to their greater availability, the miniaturization of sensors, and the ability to deploy a UAV relatively quickly and repeatedly at low altitudes. We examine in this paper the potential of using a small UAV for rangeland inventory, assessment and monitoring. Imagery with a ground resolved distance of 8 cm was acquired over a 290 ha site in southwestern Idaho. We developed a semiautomated orthorectification procedure suitable for handling large numbers of small-footprint UAV images. The geometric accuracy of the orthorectified image mosaics ranged from 1.5 m to 2 m. We used object-based hierarchical image analysis to classify imagery of plots measured concurrently on the ground using standard rangeland monitoring procedures. Correlations between imageand ground-based estimates of percent cover resulted in r-squared values ranging from 0.86 to 0.98. Time estimates indicated a greater efficiency for the image-based method compared to ground measurements. The overall classification accuracies for the two image mosaics were 83 percent and 88 percent. Even under the current limitations of operating a UAV in the National Airspace, the results of this study show that UAVs can be used successfully to obtain imagery for rangeland monitoring, and that the remote sensing approach can either complement or replace some ground-based measurements. We discuss details of the UAV mission, image processing and analysis, and accuracy assessment. Numéro de notice : A2010-226 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.76.6.661 En ligne : https://doi.org/10.14358/PERS.76.6.661 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30420
in Photogrammetric Engineering & Remote Sensing, PERS > vol 76 n° 6 (June 2010) . - pp 661 - 672[article]