Détail de l'auteur
Auteur P. North |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Forestry applications for satellite lidar remote sensing / J. Rosette in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 3 (March 2011)
[article]
Titre : Forestry applications for satellite lidar remote sensing Type de document : Article/Communication Auteurs : J. Rosette, Auteur ; J. Suarez, Auteur ; P. North, Auteur ; S. Los, Auteur Année de publication : 2011 Conférence : SilviLaser 2010, 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems 14/09/2010 17/09/2010 Fribourg Allemagne Article en page(s) : pp 271 - 279 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] altimétrie satellitaire par laser
[Termes IGN] croissance des arbres
[Termes IGN] données ICEsat
[Termes IGN] forêt
[Termes IGN] Geoscience Laser Altimeter System
[Termes IGN] hauteur des arbres
[Termes IGN] lasergrammétrie
[Termes IGN] risque naturel
[Termes IGN] ventRésumé : (Auteur) This paper presents a method to estimate forest parameter and surface topography from NASA's Geosciences Laser Altimeter System (glas). Their potential use as observational inputs to models is demonstrated using a wind-risk model for the UK, ForestGALES. Relative heights above ground were used as biophysical parameter estimators. Top Height was estimated with R2 = 0.73, RMSE = 4.5 m. Diameter at breast height estimates differed for conifer-dominated stands (R2 = 0.72, RMSE = 0.07 m) and for stands containing mostly broadleaves (R2 = 0.41, RMSE = 0.11 m). Ground elevation estimation produced R2 = 0.997, RMSE = 2.2 m. These three parameters were applied to ForestGALES for stand-level assessment of wind-throw risk. Stability is sensitive to small differences in tree dimensions, and therefore vegetation parameters require greater accuracy than those currently retrievable from GLAS to more reliably determine risk of wind-throw. Future satellite lidar mission such as NASA's DESDynl sensor aim to produce improved vegetation parameter estimation plus greater spatial cover-age which would offer more appropriate inputs for forestry models. Numéro de notice : A2011-080 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14358/PERS.77.3.271 En ligne : https://doi.org/10.14358/PERS.77.3.271 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30861
in Photogrammetric Engineering & Remote Sensing, PERS > vol 77 n° 3 (March 2011) . - pp 271 - 279[article]Uncertainty within satellite LiDAR estimations of vegetation and topography / J. Rosette in International Journal of Remote Sensing IJRS, vol 31 n° 5 (March 2010)
[article]
Titre : Uncertainty within satellite LiDAR estimations of vegetation and topography Type de document : Article/Communication Auteurs : J. Rosette, Auteur ; P. North, Auteur ; J. Suarez, Auteur ; S. Los, Auteur Année de publication : 2010 Conférence : Silvilaser 2008, 8th international conference on Lidar applications in forest assessment and inventory 17/09/2008 19/09/2008 Edimbourg Royaume-Uni Proceedings Taylor&Francis Article en page(s) : pp 1325 - 1342 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] altimétrie satellitaire par laser
[Termes IGN] canopée
[Termes IGN] décomposition de Gauss
[Termes IGN] données ICEsat
[Termes IGN] forme d'onde
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de transfert radiatif
[Termes IGN] modèle numérique de surface
[Termes IGN] pente
[Termes IGN] reliefRésumé : (Auteur) This paper demonstrates the ability to identify representative ground elevation and vegetation height estimates within the Ice, Cloud and land Elevation Satellite/Geoscience Laser Altimeter System (ICESat/GLAS) waveforms for an area of mixed vegetation and varied topography. Estimating vegetation height within large-footprint Light Detection and Ranging (LiDAR) waveforms relies on the ability to estimate the uppermost canopy surface (signal beginning) and an elevation representing the ground surface, both of which are influenced by vegetation properties and topographic slope. We examined sources of uncertainty for vegetation height estimation from ICESat/GLAS data using airborne LiDAR data, field measurements and the FLIGHT radiative transfer model. In comparison with an independent 10-m resolution digital terrain model (DTM), a method using Gaussian decomposition of the satellite waveform produced a mean bias of -0.10 m when estimating ground elevation. A second method of estimating vegetation height using waveform extent and a terrain index effectively removed slope as an error source but produced a greater ground surface offset (-0.83 m). The two methods of estimating vegetation height compared well with airborne LiDAR estimates (correlation coefficient (R2) = 0.68, root mean square error (RMSE) = 4.4 m and R2 = 0.61, RMSE = 4.9 m, respectively). However, the complex interplay of the structural and optical properties of the intercepted vegetation and slope requires further understanding. A tool such as FLIGHT provides a useful means to explore the sensitivity of the waveform to both vegetation properties and topographic slope. Numéro de notice : A2010-253 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160903380631 En ligne : https://doi.org/10.1080/01431160903380631 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30447
in International Journal of Remote Sensing IJRS > vol 31 n° 5 (March 2010) . - pp 1325 - 1342[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-2010031 RAB Revue Centre de documentation En réserve L003 Exclu du prêt