Détail de l'auteur
Auteur F. Sangermano |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Similarity weighted instance-based learning for the generation of transition potentials in land use change modeling / F. Sangermano in Transactions in GIS, vol 14 n° 5 (October 2010)
[article]
Titre : Similarity weighted instance-based learning for the generation of transition potentials in land use change modeling Type de document : Article/Communication Auteurs : F. Sangermano, Auteur ; J. Ronald Eastman, Auteur ; H. Zhu, Auteur Année de publication : 2010 Article en page(s) : pp 569 - 580 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] classification barycentrique
[Termes IGN] déboisement
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] Perceptron multicouche
[Termes IGN] similitude
[Termes IGN] traitement de données localisées
[Termes IGN] utilisation du solRésumé : (Auteur) Land use change models are increasingly being used to evaluate the effect of land change on climate and biodiversity and to generate scenarios of deforestation. Although many methods are available to model land transition potentials, they are usually not user-friendly and require the specification of many parameters, making the task difficult for decision makers not familiar with the tools, as well as making the process difficult to interpret. In this article we propose a simple method for modeling transition potentials. SimWeight is an instance-based learning algorithm based on the logic of the K-Nearest Neighbor algorithm. The method identifies the relevance of each driver variable and predicts the transition potential of locations given known instances of change. A case study was used to demonstrate and validate the method. Comparison of results with the Multi-Layer Perceptron neural network (MLP) suggests that SimWeight performs similarly in its capacity to predict transition potentials, without the need for complex parameters. Another advantage of SimWeight is that it is amenable to parallelization for deployment on a cloud computing platform. Numéro de notice : A2010-496 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/j.1467-9671.2010.01226.x Date de publication en ligne : 23/11/2010 En ligne : https://doi.org/10.1111/j.1467-9671.2010.01226.x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30689
in Transactions in GIS > vol 14 n° 5 (October 2010) . - pp 569 - 580[article]