Détail de l'auteur
Auteur U. Maulik |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Efficient parallel algorithm for pixel classification in remote sensing imagery / U. Maulik in Geoinformatica, vol 16 n° 2 (April 2012)
[article]
Titre : Efficient parallel algorithm for pixel classification in remote sensing imagery Type de document : Article/Communication Auteurs : U. Maulik, Auteur ; A. Sarkar, Auteur Année de publication : 2012 Article en page(s) : pp 391 - 407 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] image IRS
[Termes IGN] image SPOT
[Termes IGN] pixel
[Termes IGN] traitement parallèleRésumé : (Auteur) An important approach for image classification is the clustering of pixels in the spectral domain. Fast detection of different land cover regions or clusters of arbitrarily varying shapes and sizes in satellite images presents a challenging task. In this article, an efficient scalable parallel clustering technique of multi-spectral remote sensing imagery using a recently developed point symmetry-based distance norm is proposed. The proposed distributed computing time efficient point symmetry based K-Means technique is able to correctly identify presence of overlapping clusters of any arbitrary shape and size, whether they are intra-symmetrical or inter-symmetrical in nature. A Kd-tree based approximate nearest neighbor searching technique is used as a speedup strategy for computing the point symmetry based distance. Superiority of this new parallel implementation with the novel two-phase speedup strategy over existing parallel K-Means clustering algorithm, is demonstrated both quantitatively and in computing time, on two SPOT and Indian Remote Sensing satellite images, as even K-Means algorithm fails to detect the symmetry in clusters. Different land cover regions, classified by the algorithms for both images, are also compared with the available ground truth information. The statistical analysis is also performed to establish its significance to classify both satellite images and numeric remote sensing data sets, described in terms of feature vectors. Numéro de notice : A2012-094 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s10707-011-0136-5 Date de publication en ligne : 06/09/2011 En ligne : https://doi.org/10.1007/s10707-011-0136-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31542
in Geoinformatica > vol 16 n° 2 (April 2012) . - pp 391 - 407[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2012021 RAB Revue Centre de documentation En réserve L003 Disponible Automatic fuzzy clustering using modified differential evolution for image classification / U. Maulik in IEEE Transactions on geoscience and remote sensing, vol 48 n° 9 (September 2010)
[article]
Titre : Automatic fuzzy clustering using modified differential evolution for image classification Type de document : Article/Communication Auteurs : U. Maulik, Auteur ; I. Saha, Auteur Année de publication : 2010 Article en page(s) : pp 3503 - 3510 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme génétique
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] identification automatique
[Termes IGN] image satellite
[Termes IGN] occupation du sol
[Termes IGN] regroupement de donnéesRésumé : (Auteur) The problem of classifying an image into different homogeneous regions is viewed as the task of clustering the pixels in the intensity space. In particular, satellite images contain landcover types, some of which cover significantly large areas while some (e.g., bridges and roads) occupy relatively much smaller regions. Automatically detecting regions or clusters of such widely varying sizes is a challenging task. In this paper, a new real-coded modified differential evolution based automatic fuzzy clustering algorithm is proposed which automatically evolves the number of clusters as well as the proper partitioning from a data set. Here, the assignment of points to different clusters is done based on a Xie-Beni index where the Euclidean distance is taken into consideration. The effectiveness of the proposed technique is first demonstrated for two numeric remote sensing data described in terms of feature vectors and then in identifying different landcover regions in remote sensing imagery. The superiority of the new method is demonstrated by comparing it with other existing techniques like automatic clustering using improved differential evolution, classical differential evolution based automatic fuzzy clustering, variable length genetic algorithm based fuzzy clustering, and well known fuzzy C-means algorithm both qualitatively and quantitatively. Numéro de notice : A2010-571 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2010.2047020 En ligne : https://ieeexplore.ieee.org/document/5462924 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30762
in IEEE Transactions on geoscience and remote sensing > vol 48 n° 9 (September 2010) . - pp 3503 - 3510[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2010091 RAB Revue Centre de documentation En réserve L003 Disponible