Détail de l'autorité
AGU 2019 Fall Meeting 09/12/2019 13/12/2019 San Francisco Californie - Etats-Unis programme sans actes
nom du congrès :
AGU 2019 Fall Meeting
début du congrès :
09/12/2019
fin du congrès :
13/12/2019
ville du congrès :
San Francisco
pays du congrès :
Californie - Etats-Unis
site des actes du congrès :
|
Documents disponibles (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Optimization of optical clock network for the geopotential determination / Guillaume Lion (2019)
Titre : Optimization of optical clock network for the geopotential determination Type de document : Article/Communication Auteurs : Guillaume Lion , Auteur ; Isabelle Panet , Auteur ; David Coulot , Auteur ; Pacôme Delva, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2019 Conférence : AGU 2019 Fall Meeting 09/12/2019 13/12/2019 San Francisco Californie - Etats-Unis programme sans actes Projets : ChronoG2o / Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] chronométrie
[Termes IGN] décalage d'horloge
[Termes IGN] horloge optique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] potentiel de pesanteur terrestreRésumé : (auteur) Clock comparisons with an uncertainty at the 10−18 in terms of relative frequency can provide a new kind of measurement to improve our knowledge of Earth’s gravity field and geoid. Instead of using state-of-the-art Earth’s gravitational field models to predict frequency shifts between distant clocks, they could permit determining geopotential differences at a centimeter-level accuracy, and question the possibility of studying geodynamic processes leading to very small vertical deformations or improve the unification of height systems. In our previous work dealing with the geopotential determination at high spatial resolution in mountainous regions, we have pointed out that clock-based geodetic observable can provide useful information at spatial scales beyond what is available from satellites and they could be used to fill areas not covered by the gravity data on the ground. Our synthetic simulations have shown that adding few clock-based potential data to a gravimetric data set can significantly improve the reconstruction of the geopotential. Therefore, it turns out there is a large variety of possible clock distribution allowing to reduce the reconstruction residuals, with different locations and number of clocks. In this work, we investigate ways to optimize clock network from a gravimetric data set in the Massif Central region in order to know where to put them to minimize the residuals and improve further the determination of the geopotential. To do that, we have used a multi-objective genetic algorithm (GA). Starting from a random initial population with different clock distributions, the algorithm selects clock locations with good chances of reproduction and reproduces the new generation of clock locations using genetic operators. The process depends on some objectives we want to reach in order to solve the optimization problem, and it is repeated several times for a given number of generations or until a solution considered as optimum is found. We show how GA can help to provide optimal solutions for a problem with a fixed and variable number of clock locations. We discuss the effect of different parameters, such as the way to define the objectives and the constrains of the problem, the quality of the clock network and the data. Numéro de notice : C2019-057 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Poster nature-HAL : Poster-avec-CL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96833 Reconciling upper mantle seismic velocity and density structure below ocean basins / Isabelle Panet (2019)
Titre : Reconciling upper mantle seismic velocity and density structure below ocean basins Type de document : Article/Communication Auteurs : Isabelle Panet , Auteur ; Barbara Romanowicz, Auteur ; Marianne Greff-Lefftz, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2019 Projets : 1-Pas de projet / Conférence : AGU 2019 Fall Meeting 09/12/2019 13/12/2019 San Francisco Californie - Etats-Unis programme sans actes Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données bathymétriques
[Termes IGN] données GRACE
[Termes IGN] fond marin
[Termes IGN] geoïde marin
[Termes IGN] géophysique interne
[Termes IGN] Indien (océan)
[Termes IGN] manteau terrestre
[Termes IGN] Pacifique (océan)
[Termes IGN] structure géologique
[Termes IGN] vitesse de déplacementRésumé : (auteur) Imaging the spatial pattern of mantle flows and constraining their mass is one of the keys to understand the character of mantle convection inside the Earth, and its interactions with plate motions. The horizontal planform of the flows, their heterogeneity and mass transport at depth, are reflected in variations of the gravity field and seismic velocities, as well as deformations of the Earth's surface. Over ocean basins, these observables show an elusive medium-scale structure. A 1500-2000 km wavelength directional fabric following the present-day absolute plate motion is present in the Pacific Ocean in GRACE satellite gravity data (Hayn et al., 2012), while 2000-km wavelength slow shear velocity anomalies sharing a similar orientation are found in seismic tomography at upper mantle depths below the oceans (SEMUM2, French et al., 2013). Today, the dynamic processes at the origin of these observations remain unresolved.
Here, we develop a joint analysis of satellite gravity and bathymetry data together with the SEMUM2 seismic tomography model, in order to advance our understanding of upper to mid-mantle flows below the oceans. First, we enhance and reconstruct the medium-scale gravity and seafloor topography signals aligned with the present-day plate motion from an analysis of the rates of gravity vector variations and seafloor slopes. Then, we compare the obtained signals with the spatial distribution of shear velocity anomalies at depth. We show that slow velocity anomalies coincide with geoid lows, depressions in the seafloor topography, and mass excess in the mantle, in the Pacific ocean and part of the Indian ocean. We first consider a purely thermal interpretation of the seismic velocity variations, associated with medium-scale convective rolls in the upper to mid-mantle, a process able to only explain the observed geometry of anomalies. Investigating whether the needed mass excess arises from lithospheric or deeper sources, such as at the level of the 660-km interface, we conclude that it lies more likely within the slow velocity anomalies themselves, suggesting hot and dense structures. We finally discuss the possible meaning and implications of these results.Numéro de notice : C2019-058 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Poster nature-HAL : Poster-avec-CL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96896