Détail de l'auteur
Auteur A. Salberg |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Land cover classification of cloud-contaminated multitemporal high-resolution images / A. Salberg in IEEE Transactions on geoscience and remote sensing, vol 49 n° 1 Tome 2 (January 2011)
[article]
Titre : Land cover classification of cloud-contaminated multitemporal high-resolution images Type de document : Article/Communication Auteurs : A. Salberg, Auteur Année de publication : 2011 Article en page(s) : pp 377 - 387 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classificateur non paramétrique
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image multitemporelle
[Termes IGN] image optique
[Termes IGN] Norvège
[Termes IGN] occupation du solRésumé : (Auteur) We show how methods proposed in the statistical community dealing with missing data may be applied for land cover classification, where optical observations are missing due to clouds and snow. The proposed method is divided into two stages: 1) cloud/snow classification and 2) training and land cover classification. The purpose of the cloud/snow classification stage is to determine which pixels are missing due to clouds and snow. All pixels in each optical image are classified into the classes cloud, snow, water, and vegetation using a suitable classifier. The pixels classified as cloud or snow are labeled as missing, and this information is used in the subsequent training and classification stage, which deals with classification of the pixels into various land cover classes. For land cover classification, we apply the maximum-likelihood (assuming normal distributions), -nearest neighbor, and Parzen classifiers, all modified to handle missing features. The classifiers are evaluated on Landsat (both Thematic Mapper and Enhanced Thematic Mapper Plus) images covering a scene at about 900 m a.s.l. in the Hardangervidda mountain plateau in Southern Norway, where 4869 in situ samples of the land cover classes water, ridge, leeside, snowbed, mire, forest, and rock are obtained. The results show that proper modeling of the missing pixels improves the classification rate by 5%-10%, and by using multiple images, we increase the chance of observing the land cover type substantially. The nonparametric classifiers handle nonignorable missing-data mechanisms and are therefore particularly suitable for remote sensing applications where the pixels covered by snow and cloud may depend on the land cover type. Numéro de notice : A2011-052 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2010.2052464 Date de publication en ligne : 26/07/2010 En ligne : https://doi.org/10.1109/TGRS.2010.2052464 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30833
in IEEE Transactions on geoscience and remote sensing > vol 49 n° 1 Tome 2 (January 2011) . - pp 377 - 387[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2011011B RAB Revue Centre de documentation En réserve L003 Disponible