Détail de l'auteur
Auteur Jorge Abel Recio |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery / Luis Angel Ruiz in Geocarto international, vol 33 n° 5 (May 2018)
[article]
Titre : An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery Type de document : Article/Communication Auteurs : Luis Angel Ruiz, Auteur ; Jorge Abel Recio, Auteur ; Pablo Crespo-Peremarch, Auteur ; Marta Sapena Moll, Auteur Année de publication : 2018 Article en page(s) : pp 443 - 457 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] arbre de décision
[Termes IGN] biomasse (combustible)
[Termes IGN] carte forestière
[Termes IGN] classification barycentrique
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt méditerranéenne
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Worldview
[Termes IGN] modèle de simulation
[Termes IGN] structure d'un peuplement forestierRésumé : (Auteur) Mapping forest structure variables provides important information for the estimation of forest biomass, carbon stocks, pasture suitability or for wildfire risk prevention and control. The optimization of the prediction models of these variables requires an adequate stratification of the forest landscape in order to create specific models for each structural type or strata. This paper aims to propose and validate the use of an object-oriented classification methodology based on low-density LiDAR data (0.5 m−2) available at national level, WorldView-2 and Sentinel-2 multispectral imagery to categorize Mediterranean forests in generic structural types. After preprocessing the data sets, the area was segmented using a multiresolution algorithm, features describing 3D vertical structure were extracted from LiDAR data and spectral and texture features from satellite images. Objects were classified after feature selection in the following structural classes: grasslands, shrubs, forest (without shrubs), mixed forest (trees and shrubs) and dense young forest. Four classification algorithms (C4.5 decision trees, random forest, k-nearest neighbour and support vector machine) were evaluated using cross-validation techniques. The results show that the integration of low-density LiDAR and multispectral imagery provide a set of complementary features that improve the results (90.75% overall accuracy), and the object-oriented classification techniques are efficient for stratification of Mediterranean forest areas in structural- and fuel-related categories. Further work will be focused on the creation and validation of a different prediction model adapted to the various strata. Numéro de notice : A2018-140 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1265595 Date de publication en ligne : 28/11/2016 En ligne : https://doi.org/10.1080/10106049.2016.1265595 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89690
in Geocarto international > vol 33 n° 5 (May 2018) . - pp 443 - 457[article]Historical land use as a feature for image classification / Jorge Abel Recio in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 4 (April 2011)
[article]
Titre : Historical land use as a feature for image classification Type de document : Article/Communication Auteurs : Jorge Abel Recio, Auteur ; Txomin Hermosilla, Auteur ; L. Ruiz, Auteur ; A. Fernandez-Sarria, Auteur Année de publication : 2011 Article en page(s) : pp 377 - 387 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] mise à jour de base de données
[Termes IGN] précision de la classification
[Termes IGN] utilisation du solRésumé : (Auteur) This paper analyzes the effect of the addition of historical land-use as a descriptive feature in plot-based image classification when updating land-use/land-cover geospatial databases. Several historical databases have been simulated to assess the influence and significance of this feature in the classification. The causes, nature, and evolution of classification errors as the database currency varies are analyzed; and the impact of these errors on change detection during the updating process is evaluated. The results show that the addition of historical land-use information increases the overall accuracy of image classifications. During a database updating process, changes are detected by comparing the historical land-use with the classification results. The main drawback of employing historical land-use as a descriptive feature in image classification for change detection is that the percentage of undetectable errors significantly increases as more accurate is the database information. Numéro de notice : A2011-129 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.77.4.377 En ligne : https://doi.org/10.14358/PERS.77.4.377 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30908
in Photogrammetric Engineering & Remote Sensing, PERS > vol 77 n° 4 (April 2011) . - pp 377 - 387[article]