Détail de l'autorité
EarthVision 2022, Large Scale Computer Vision for Remote Sensing Imagery, workshop joint to CVPR 2022 19/06/2022 24/06/2022 New Orleans Louisiane - Etats-Unis OA Proceedings
Autorités liées :
nom du congrès :
EarthVision 2022, Large Scale Computer Vision for Remote Sensing Imagery, workshop joint to CVPR 2022
début du congrès :
19/06/2022
ville du congrès :
New Orleans
pays du congrès :
Louisiane - Etats-Unis
site des actes du congrès :
|
Documents disponibles (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Cross-dataset learning for generalizable land use scene classification Type de document : Article/Communication Auteurs : Dimitri Gominski , Auteur ; Valérie Gouet-Brunet , Auteur ; Liming Chen, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2022 Projets : Alegoria / Gouet-Brunet, Valérie Conférence : EarthVision 2022, Large Scale Computer Vision for Remote Sensing Imagery, workshop joint to CVPR 2022 19/06/2022 24/06/2022 New Orleans Louisiane - Etats-Unis OA Proceedings Importance : pp 1382 - 1391 Note générale : bibliographie
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2022, pp. 1382-1391Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] cadre conceptuel
[Termes IGN] descripteur
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] intelligence artificielle
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Few-shot and cross-domain land use scene classification methods propose solutions to classify unseen classes or uneen visual distributions, but are hardly applicable to real-world situations due to restrictive assumptions. Few-shot methods involve episodic training on restrictive training subsets with small feature extractors, while cross-domain methods are only applied to common classes. The underlying challenge remains open: can we accurately classify new scenes on new datasets? In this paper, we propose a new framework for few-shot, cross-domain classification. Our retrieval-inspired approach exploits the interrelations in both the training and testing data to output class labels using compact descriptors. Results show that our method can accurately produce land-use predictions on unseen datasets and unseen classes, going beyond the traditional few-shot or cross-domain formulation, and allowing cross-dataset training. Numéro de notice : C2022-031 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers IEEE Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/CVPRW56347.2022.00144 En ligne : https://openaccess.thecvf.com/content/CVPR2022W/EarthVision/papers/Gominski_Cros [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101087
Titre : Multi-layer modeling of dense vegetation from aerial LiDAR scans Type de document : Article/Communication Auteurs : Ekaterina Kalinicheva , Auteur ; Loïc Landrieu , Auteur ; Clément Mallet , Auteur ; Nesrine Chehata , Auteur Editeur : Computer vision foundation CVF Année de publication : 2022 Projets : 1-Pas de projet / Gouet-Brunet, Valérie Conférence : EarthVision 2022, Large Scale Computer Vision for Remote Sensing Imagery, workshop joint to CVPR 2022 19/06/2022 24/06/2022 New Orleans Louisiane - Etats-Unis OA Proceedings Importance : pp 1341 - 1350 Format : 21 x 30 cm Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte d'occupation du sol
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étage de végétation
[Termes IGN] foresterie
[Termes IGN] maillage
[Termes IGN] parcelle forestière
[Termes IGN] reconstruction d'objet
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) The analysis of the multi-layer structure of wild forests is an important challenge of automated large-scale forestry. While modern aerial LiDARs offer geometric information across all vegetation layers, most datasets and methods focus only on the segmentation and reconstruction of the top of canopy. We release WildForest3D, which consists of 29 study plots and over 2000 individual trees across 47 000m2 with dense 3D annotation, along with occupancy and height maps for 3 vegetation layers: ground vegetation, understory, and overstory. We propose a 3D deep net- work architecture predicting for the first time both 3D point- wise labels and high-resolution layer occupancy rasters simultaneously. This allows us to produce a precise estimation of the thickness of each vegetation layer as well as the corresponding watertight meshes, therefore meeting most forestry purposes. Both the dataset and the model are released in open access: https://github.com/ ekalinicheva/multi_layer_vegetation. Numéro de notice : C2022-007 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers CVF Thématique : FORET/IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/CVPRW56347.2022.00140 Date de publication en ligne : 25/04/2022 En ligne : https://arxiv.org/abs/2204.11620 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100509