Détail de l'auteur
Auteur Anne Puissant |
Documents disponibles écrits par cet auteur (30)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Products and services of the Urban THEIA Scientific Expertise Centre Type de document : Article/Communication Auteurs : Anne Puissant, Auteur ; Thibault Catry, Auteur ; Rémi Cresson, Auteur ; Nadine Dessay, Auteur ; Laurent Demagistri, Auteur ; Sébastien Gadal, Auteur ; Arnaud Le Bris , Auteur ; Kenji Ose, Auteur ; Benjamin Pillot, Auteur Editeur : Strasbourg : Université de Strasbourg Année de publication : 2022 Conférence : LPS 2022, ESA Living Planet Symposium 22/05/2022 27/05/2022 Bonn Allemagne programme sans actes Note générale : projet AIMCEE (Apport de l’Imagerie satellitaire Multi-Capteurs pour répondre aux Enjeux Environnementaux et sociétaux des socio-systèmes urbains) Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] données spatiotemporelles
[Termes IGN] image satelliteRésumé : (auteur) The THEIA data and services centre (www.theia-land.fr) is a consortium of 12 French public institutions involved in Earth observation and environmental sciences (CEA, CEREMA, CIRAD, CNES, IGN, INRA, CNRS, IRD, Irstea, Météo France, AgroParisTech, and ONERA). THEIA was initiated in 2012 with the objective of increasing the use of space data by the scientific community and the public actors. The first years allowed structuring the national science and user communities, pooling resources to facilitate access to data and processing capacities, federating various previously unrelated initiatives, and disseminating the French achievements nationally and internationally.
The THEIA Land Data and Services Centre (www.theia-land.fr) is a consortium of 12 French public institutions involved in Earth observation and environmental sciences (CEA, CEREMA, CIRAD, CNES, IGN, INRAE, CNRS, IRD, Irstea, Météo France, AgroParisTech, and ONERA). THEIA has been initiated with the objective of increasing the use of space data by the scientific community and the public actors. The Scientific Expertise Centers (SEC) cluster research groups on various thematic domains. The "Urban” SEC gathers experts in multi-sensor urban remote sensing. Researchers of this group have structured their works around the development of algorithms useful for urban remote sensing using optical and SAR sensors to propose “urban products” at three different spatial scales: (1) the urban footprint, (2) the urban fabrics and (3) the urban objects. The objective of this poster is to present recent (>2019) advances of the URBAN SEC at these three scales. For the first two, the proposed methods are adapted to the geographic context of urban cities (West Cities, South Cities first and North Cities). For each spatial scale, the objective is to propose validated scientific products already available or in the near-term through the THEIA Land Service and Data Infrastructure.
At the macro-scale (urban footprint), an unsupervised automated approach is currently under development at Espace-DEV - Montpellier, and funded by a CNES project (TOSCA DELICIOSA). This method is derived from the FOTO algorithm originally developed to differentiate vegetation textures in HR and VHR satellite images (Couteron et al. 2006, Lang et al., 2019). It has been optimized and packaged into the FOTOTEX Python Open-Source library. The method is very well suited for areas with no or few urban settlement data or with quickly growing informal settlements. No training dataset is required, and the urban footprint can be identified from only one satellite image as long as it is not covered by clouds. For Western Cities where training datasets are available, the Urba-Opt processing chain based on an automatic and object-oriented approach has been deployed on HPC infrastructure and produce annually (since 2018) an urban settlement product which is available through the A2S dissemination infrastructure and on the Urban SEC of Theia land data and service Infrastructure. An ongoing research between LIVE and Espace Dev Labs focused on the interest to use the FOTOTEX result as training data in the Urba-Opt processing chain to propose an updated product of urban settlement for South cities.
At the scales of urban fabrics, products are under research activities The LIVE lab. In the context of an ongoing PhD thesis (ANR TIMES) and Tosca project (CNES 2019-2022) Sentinel-2 single-date images are used to assess two semantic segmentation networks (U-Net) that we combined using feature fusion between a from scratch network and a pre-trained network on ImageNet. Three spectral or textural indices have been added to the both networks in order to improve the classification results. The results showed a performance gain for the fusion methods. The research activities are ongoing in order to test the S1 imagery and temporal series for training in a deep architecture.
The IGN-LaSTIG - Univ. Paris Est has focused on the use of Sentinel-2 and VHR mono-temporal SPOT products to retrieve land cover information related to urban density. First, images undergo a U-net based semantic segmentation at urban object level to retrieve ‘topographic’ classes (buildings, roads, vegetation, …). Generalized information about urban fabrics is then derived out of these land cover maps thanks to another CNN architecture. Both a building density measure and a simplified Urban Atlas like land cover map are calculated. The UMR ESPACE has focused on the machine learning modeling of the evolution of urban territories of Arctic (Yakutsk) and North-Eastern Europe (Baltic States and Kaliningrad) cities since the post-Soviet period at two scales: those of the built-up area with high spatial resolution SPOT 6/7 images, and of the urban structures based on the use of Landsat 5 TM, Landsat 8 OLI, and Sentinel 2 MSI images. Environmental (urban vegetation), economic (agricultural transformation), and morphometric indexes have been developed to characterize the processes of urban restructuring (densification, renovation) and expansion of post-Soviet cities. A comparative analysis of the machine learning algorithms used was done on the South-East Baltic cities to evaluate their performance.
At the scale of urban object (3), a map of building with their functions is proposed by the TETIS laboratory. The study targets the retrieval of buildings footprint using deep convolutional neural networks for semantic segmentation, from Spot-6/7 images (1,5m spacing), on the entire France mainland. A single model has been trained and validated from 1.2k Spot-6/7 scenes and 20M images patches. The LIVE Lab has focused on the detection of urban changes from tri-stereoscopic Pléiades imagery through 2017 to 2020. A processing chain based on a Random Forest classifiers (ImCLASS) has been tested and the impact of the height attribute to detect changes has been evaluated to characterize changes into three thematic classes of changes.Numéro de notice : C2022-016 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Poster nature-HAL : Poster-avec-CL DOI : sans En ligne : https://express.converia.de/frontend/index.php?page_id=22745&additions_conferenc [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100842 Documents numériques
peut être téléchargé
Products and services of the Urban THEIA Scientific Expertise Centre - posterAdobe Acrobat PDF Exploitation de séries temporelles d'images multi-sources pour la cartographie des surfaces en eau / Filsa Bioresita (2019)
Titre : Exploitation de séries temporelles d'images multi-sources pour la cartographie des surfaces en eau Type de document : Thèse/HDR Auteurs : Filsa Bioresita, Auteur ; Anne Puissant, Directeur de thèse Editeur : Strasbourg : Université de Strasbourg Année de publication : 2019 Importance : 214 p. Format : 21 x 30 cm Note générale : Bibliographie
PhD Thesis University of Strasbourg for obtaining the degree of Doctor of the University of Strasbourg, Speciality: Geography, GeomaticsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] biodiversité
[Termes IGN] eau de surface
[Termes IGN] estimation bayesienne
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] inondation
[Termes IGN] nutriment végétal
[Termes IGN] polarimétrie
[Termes IGN] série temporelle
[Termes IGN] service écosystémique
[Termes IGN] surveillance hydrologique
[Termes IGN] télédétection spatiale
[Termes IGN] traitement automatique de donnéesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les eaux de surface sont des ressources importantes pour la biosphère et l'anthroposphère. Elles favorisent la préservation des habitats, le développement de la biodiversité et le maintien des services écosystémiques en contrôlant le cycle des nutriments et le carbone à l’échelle mondiale. Elles sont essentielles à la vie quotidienne de l’homme, notamment pour l'irrigation, la consommation d’eau potable, la production hydro-électrique, etc. Par ailleurs, lors des inondations, elles peuvent présenter des dangers pour l'homme, les habitations et les infrastructures. La surveillance des changements dynamiques des eaux de surface a donc un rôle primordial pour guider les choix des gestionnaires dans le processus d’aide à la décision. L’imagerie satellitaire constitue une source de données adaptée permettant de fournir des informations sur les eaux de surface. De nos jours, la télédétection satellitaire a connu une révolution avec le lancement des satellites Sentinel-1 (Radar) et Sentinel-2 (Optique) qui disposent d’une haute fréquence de revisite et d’une résolution spatiale moyenne à élevée. Ces données peuvent fournir des séries temporelles essentielles pour apporter davantage d'informations afin d'améliorer la capacité d'observation des eaux de surface. L’exploitation de telles données massives et multi-sources pose des défis en termes d’extraction de connaissances et de processus de traitement d’images car les chaines de traitement doivent être le plus automatiques possibles. Dans ce contexte, l'objectif de ce travail de thèse est de proposer de nouvelles approches permettant de cartographier l’extension spatiales des eaux de surface et des inondations, en explorant l'utilisation unique et combinée des données Sentinel-1 et Sentinel-2. Note de contenu : 1- Introduction, research questions and objectives
2- The state of the art
3- Study area, data sets and pre-processing of Sentinel 1 & 2
4- Detection of surface water area using mono-date Sentinel 1 amplitude data
5- Detection of surface water area using time series of Sentinel 1 amplitude data and Sentinel 2 data
6- Another methods and validation on different thematic context
7- General conclusions and perspectivesNuméro de notice : 25726 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : PhD Thesis : Geography, Geomatics : Strasbourg : 2019 nature-HAL : Thèse DOI : sans En ligne : https://hal.science/hal-03618382/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94887 Innovative Methods and Products of the " Urbanization and Artificialization" Scientific Expertise Centre / Anne Puissant (2019)
Titre : Innovative Methods and Products of the " Urbanization and Artificialization" Scientific Expertise Centre Type de document : Article/Communication Auteurs : Anne Puissant, Auteur ; Arnaud Le Bris , Auteur ; Vincent Thieron, Auteur ; Thomas Corpetti, Auteur ; Thibault Catry, Auteur ; Sébastien Gadal, Auteur ; Xavier Briottet , Auteur ; Remy Cression, Auteur ; Nicolas Baghdadi, Auteur ; Arnaud Sellé, Auteur Editeur : Paris : HAL Année de publication : 2019 Conférence : LPS 2019, ESA Living Planet Symposium 13/05/2019 17/05/2019 Milan Italie programme sans actes Importance : 2 p. Format : 21 x 30 cm Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] données localisées
[Termes IGN] empreinte écologique
[Termes IGN] information scientifique et technique
[Termes IGN] télédétection
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) he THEIA Land Data and Services Centre (www.theia-land.fr) is a consortium of 12 French public institutions involved in Earth observation and environmental sciences (CEA, CEREMA, CIRAD, CNES, IGN, INRA, CNRS, IRD, Irstea, Météo France, AgroParisTech, and ONERA). THEIA has been initiated in 2012 with the objective of increasing the use of space data by the scientific community and the public actors. THEIA structured the French scientific community 1) through a mutualized Service and Data Infrastructure (SDI) distributed between several centers, allowing access to a variety of products; 2) through the setup of Regional Animation Networks (RAN) to federate and animate users (scientists and public / private actors) and 3) through Scientific Expertise Centres (SEC) clustering virtual research groups on a thematic domain. One of this SEC is the "Urbanization and Artificialization” Centre clustering experts in multi-sensor urban remote sensing. THEIA in collaboration with ODATIS (Data and Service for the Ocean), ForM@Ter (Data and Service for the Solid Earth), and AERIS (Data and Service for the Atmosphere) form the "Earth System" Research Infrastructure. The objective of this poster is to present recent (>2016) innovations of the URBAN SEC in terms of (1) development of algorithms useful for urban remote sensing using optical and SAR sensors, (2) validation of the urban products provided by the THEIA Land Service and Data Infrastructure, and (3) demonstration of user-tailored applications for urban studies. The Urban Expert Centre brings together researchers and engineers from several institutes: LIVE - Strasbourg, IGN-LaSTIG - Univ. Paris Est, CESBIO – Toulouse, LETG - Rennes, Irstea – Montpellier, TETIS - Montpellier, INP Bordeaux, IRD, ESPACE-DEV - Montpellier, ESPACE - Nice, ONERA. Research results and methods linked to (1) the detection and mapping of the urban footprint at an annual frequency; (2) the identification of urban fabrics, (3) the mapping of green networks within the cities. In parallel, the group proposes to summarize and identify relevant indicators (parameters) dedicated to urban planning and management. Numéro de notice : C2019-046 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Poster nature-HAL : ComSansActesPubliés-Unpublished DOI : sans En ligne : https://hal.archives-ouvertes.fr/hal-02135846 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95429 Multimodal scene understanding: algorithms, applications and deep learning, ch. 11. Decision fusion of remote-sensing data for land cover classification / Arnaud Le Bris (2019)
Titre de série : Multimodal scene understanding: algorithms, applications and deep learning, ch. 11 Titre : Decision fusion of remote-sensing data for land cover classification Type de document : Chapitre/Contribution Auteurs : Arnaud Le Bris , Auteur ; Nesrine Chehata , Auteur ; Walid Ouerghemmi , Auteur ; Cyril Wendl, Auteur ; Tristan Postadjian , Auteur ; Anne Puissant, Auteur ; Clément Mallet , Auteur Editeur : Londres, New York : Academic Press Année de publication : 2019 Importance : pp 341 - 382 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] fusion de données multisource
[Termes IGN] image à très haute résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] occupation du sol
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (Auteur) Very high spatial resolution (VHR) multispectral imagery enables a fine delineation of objects and a possible use of texture information. Other sensors provide a lower spatial resolution but an enhanced spectral or temporal information, permitting one to consider richer land cover semantics. So as to benefit from the complementary characteristics of these multimodal sources, a decision late fusion scheme is proposed. This makes it possible to benefit from the full capacities of each sensor, while dealing with both semantic and spatial uncertainties. The different remote-sensing modalities are first classified independently. Separate class membership maps are calculated and then merged at the pixel level, using decision fusion rules. A final label map is obtained from a global regularization scheme in order to deal with spatial uncertainties while conserving the contrasts from the initial images. It relies on a probabilistic graphical model involving a fit-to-data term related to merged class membership measures and an image-based contrast-sensitive regularization term. Conflict between sources can also be integrated into this scheme. Two experimental cases are presented. In the first case one considers the fusion of VHR multispectral imagery with lower spatial resolution hyperspectral imagery for fine-grained land cover classification problem in dense urban areas. In the second case one uses SPOT 6/7 satellite imagery and Sentinel-2 time series to extract urban area footprints through a two-step process: classifications are first merged in order to detect building objects, from which a urban area prior probability is derived and eventually merged to Sentinel-2 classification output for urban footprint detection. Numéro de notice : H2019-002 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : 10.1016/B978-0-12-817358-9.00017-2 Date de publication en ligne : 02/08/2019 En ligne : https://doi.org/10.1016/B978-0-12-817358-9.00017-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93303
Titre : The ‘urban’ component of the French Land Data and Services Centre (Theia) Type de document : Article/Communication Auteurs : Anne Puissant, Auteur ; Arnaud Sellé, Auteur ; Nicolas Baghdadi, Auteur ; Vincent Thierion, Auteur ; Arnaud Le Bris , Auteur ; Jean-Louis Roujean, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2019 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : JURSE 2019, Joint Urban Remote Sensing Event 22/05/2019 24/05/2019 Vannes France Proceedings IEEE Importance : 4 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] image aérienne
[Termes IGN] image spatialeRésumé : (auteur) The THEIA data and services centre has been created with the objective of increasing the use of space data by the scientific community and the public actors. THEIA structured the French scientific community 1) through a mutualized Service and Data Infrastructure (SDI) distributed between several centers, allowing access to a variety of products; 2) through the setup of Regional Animation Networks (RAN) to federate and animate users (scientists and public / private actors) and 3) through Scientific Expertise Centres (SEC) clustering virtual research groups on a thematic domain. The research works carried out for urban studies in three SEC are presented in this paper. The works are organized around the design and development of value-added products and services. Numéro de notice : C2019-003 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/JURSE.2019.8808998 Date de publication en ligne : 22/08/2019 En ligne : https://doi.org/10.1109/JURSE.2019.8808998 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92208 Fusion tardive d’images SPOT 6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)PermalinkPermalinkDecision fusion of SPOT6 and multitemporal Sentinel2 images for urban area detection / Cyril Wendl (2018)PermalinkFusion de classifications de données SPOT 6/7 et SENTINEL 2 pour la détection des zones artificialisées / Arnaud Le Bris (2018)PermalinkFusion tardive d’images SPOT-6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl (2018)PermalinkMise en place d'une méthode semi-automatique de cartographie de l'occupation des sols à partir d'images SAR polarimétriques / Monique Moine in Revue Française de Photogrammétrie et de Télédétection, n° 215 (mai - août 2017)PermalinkActive learning in the spatial domain for remote sensing image classification / André Stumpf in IEEE Transactions on geoscience and remote sensing, vol 52 n° 5 tome 1 (May 2014)PermalinkApproches multi-hiérarchiques pour l'analyse d'images de télédétection / Camille Kurtz in Revue Française de Photogrammétrie et de Télédétection, n° 205 (Janvier 2014)PermalinkHierarchical extraction of landslides from multiresolution remotely sensed optical images / Camille Kurtz in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)PermalinkAnalyse spatiotemporelle de glissements de terrain littoraux par l’exploitation de données géospatiales multisources / Candide Lissak in Revue internationale de géomatique, vol 23 n° 2 (juin - aout 2013)Permalink