Détail de l'auteur
Auteur S. Beheshti |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Simultaneous denoising and intrinsic order selection in hyperspectral imaging / M. Farzam in IEEE Transactions on geoscience and remote sensing, vol 49 n° 9 (September 2011)
[article]
Titre : Simultaneous denoising and intrinsic order selection in hyperspectral imaging Type de document : Article/Communication Auteurs : M. Farzam, Auteur ; S. Beheshti, Auteur Année de publication : 2011 Article en page(s) : pp 3423 - 3436 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bruit atmosphérique
[Termes IGN] classification automatique
[Termes IGN] estimation de précision
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectrale
[Termes IGN] propagation d'erreur
[Termes IGN] rapport signal sur bruitRésumé : (Auteur) In this paper, we address the problem of order selection in noisy hyperspectral applications. In conventional unmixing methods, this problem has been divided into two separate processes of order selection and unmixing. Order selection methods generally use a denoising approach at the beginning stage. The data in this case pass through three stages: denoising, order selection, and unmixing. Each of these steps mainly aims to optimize a different criterion independently. In addition, any error created in the denoising process will be propagated not only to the order selection stage but also consequently to the unmixing results. Commonly used denoising methods such as eigenvalue-decomposition-based methods, e.g., singular-value-decomposition-based methods, provide a threshold value to separate the noise from the signal. These approaches are heavily sensitive to the threshold value and signal-to-noise ratio (SNR). Moreover, these methods tend to lose their efficiency rapidly for lower SNRs. Note that both the denoising step and the dimension estimation step aim to provide the optimum estimate of the same noiseless data. Consequently, adopting a simultaneous denoising and dimension estimation method with a goal to provide the optimum estimate of the desired noiseless data is rational. This process not only avoids possible error propagations from the denoising stage to the dimension estimation stage but also unifies the optimization criteria that were used in each of these steps. In this paper, a simultaneous denoising and dimension estimation method is introduced. The approach is based on minimizing the estimated mean square error. Minimization is done by comparing the estimated data in a range of subspaces dictated by a simultaneous process. Minimizing the error at once, the proposed method denoises the data and provides the optimum dimension simultaneously. Owing to the parallel processing of denoising and dimension estimation, the simulation results show the advantages of the proposed method over some of the state-of-the-art approaches and illustrate a substantial performance, particularly for cases with a lower SNR. Numéro de notice : A2011-363 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2119400 Date de publication en ligne : 29/04/2011 En ligne : https://doi.org/10.1109/TGRS.2011.2119400 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31142
in IEEE Transactions on geoscience and remote sensing > vol 49 n° 9 (September 2011) . - pp 3423 - 3436[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2011091 RAB Revue Centre de documentation En réserve L003 Disponible