Détail de l'auteur
Auteur Bruno Vallet
Commentaire :
Autorités liées :
idHAL :
bruno-vallet
idRef :
autre URL :
ORCID :
Scopus :
Publons :
G. Scholar :
DBLP URL :
|
Documents disponibles écrits par cet auteur (87)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Towards efficient indoor/outdoor registration using planar polygons / Rahima Djahel in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Towards efficient indoor/outdoor registration using planar polygons Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Bruno Vallet , Auteur ; Pascal Monasse, Auteur Année de publication : 2021 Projets : BIOM / Vallet, Bruno Article en page(s) : pp 51 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] appariement de primitives
[Termes IGN] bati
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de points
[Termes IGN] géométrie euclidienne
[Termes IGN] polygone
[Termes IGN] scène intérieure
[Termes IGN] scène urbaine
[Termes IGN] superposition de donnéesRésumé : (auteur) The registration of indoor and outdoor scans with a precision reaching the level of geometric noise represents a major challenge for Indoor/Outdoor building modeling. The basic idea of the contribution presented in this paper consists in extracting planar polygons from indoor and outdoor LiDAR scans, and then matching them. In order to cope with the very small overlap between indoor and outdoor scans of the same building, we propose to start by extracting points lying in the buildings’ interior from the outdoor scans as points where the laser ray crosses detected façades. Since, within a building environment, most of the objects are bounded by a planar surface, we propose a new registration algorithm that matches planar polygons by clustering polygons according to their normal direction, then by their offset in the normal direction. We use this clustering to find possible polygon correspondences (hypotheses) and estimate the optimal transformation for each hypothesis. Finally, a quality criteria is computed for each hypothesis in order to select the best one. To demonstrate the accuracy of our algorithm, we tested it on real data with a static indoor acquisition and a dynamic (Mobile Laser Scanning) outdoor acquisition. Numéro de notice : A2021-490 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2021-51-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-2-2021-51-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97955
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 51 - 58[article]
Titre : AI4GEO: a data intelligence platform for 3D geospatial mapping Type de document : Article/Communication Auteurs : Pierre-Marie Brunet, Auteur ; Pierre Lassalle, Auteur ; Simon Baillarin, Auteur ; Bruno Vallet , Auteur ; Arnaud Le Bris , Auteur ; Gaëlle Romeyer , Auteur ; Guy Le Besnerais, Auteur ; Flora Weissgerber, Auteur ; Gilles Foulon, Auteur ; Vincent Gaudissart, Auteur ; Christophe Triquet, Auteur ; Michael Darques, Auteur ; Gwénaël Souillé, Auteur ; Laurent Gabet, Auteur ; Cedrik Ferrero, Auteur ; Thanh-Long Huynh, Auteur ; Emeric Lavergne, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : AI4GEO / Vallet, Bruno Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 817 - 823 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] chaîne de traitement
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] jeu de données localisées
[Termes IGN] plateforme logicielle
[Termes IGN] segmentation sémantique
[Termes IGN] traitement de données localiséesRésumé : (auteur) The availability of 3D Geospatial information is a key issue for many expanding sectors such as autonomous vehicles, business intelligence and urban planning. Its production is now possible thanks to the abundance of available data (Earth observation satellite constellations, insitu data, …) but manual interventions are still needed to guarantee a high level of quality, which prevents mass production. New artificial intelligence and big data technologies adapted to 3D imagery can help to remove these obstacles. The AI4GEO project aims at developing an automatic solution for producing 3D geospatial information and new added-value services. This paper will first introduce AI4GEO initiative, context and overall objectives. It will then present the current status of the project and in particular it will focus on the innovative platform put in place to handle big 3D datasets for analytics needs and it will present the first results of 3D semantic segmentations and associated perspectives. Numéro de notice : C2021-015 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-817-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-817-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98067
Titre : Efficiently distributed watertight surface reconstruction Type de document : Article/Communication Auteurs : Laurent Caraffa , Auteur ; Yanis Marchand , Auteur ; Mathieu Brédif , Auteur ; Bruno Vallet , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2021 Projets : 1-Pas de projet / Vallet, Bruno Conférence : 3DV 2021, International Conference on 3D Vision 01/12/2021 03/12/2021 Londres online Royaume-Uni Proceedings IEEE Importance : pp 1432 - 1441 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme Graph-Cut
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] scène
[Termes IGN] semis de points
[Termes IGN] Spark
[Termes IGN] triangulation de DelaunayRésumé : (auteur) We present an out-of-core and distributed surface reconstruction algorithm which scales efficiently on arbitrarily large point clouds (with optical centres) and produces a 3D watertight triangle mesh representing the surface of the underlying scene. Surface reconstruction from a point cloud is a difficult problem and existing state of the art approaches are usually based on complex pipelines making use of global algorithms (i.e. Delaunay triangulation, graph-cut optimisation). For one of these approaches, we investigate the distribution of all the steps (in particular Delaunay triangulation and graph-cut optimisation) in order to propose a fully scalable method. We show that the problem can be tiled and distributed across a cloud or a cluster of PCs by paying a careful attention to the interactions between tiles and using Spark computing framework. We confirm the efficiency of this approach with an in-depth quantitative evaluation and the successful reconstruction of a surface from a very large data set which combines more than 350 million aerial and terrestrial LiDAR points. Numéro de notice : C2021-037 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/3DV53792.2021.00150 En ligne : https://doi.org/10.1109/3DV53792.2021.00150 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99167
Titre : Evaluating surface mesh reconstruction of open scenes Type de document : Article/Communication Auteurs : Yanis Marchand , Auteur ; Bruno Vallet , Auteur ; Laurent Caraffa , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : 1-Pas de projet / Vallet, Bruno Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 369 - 376 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] code source libre
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] évaluation
[Termes IGN] qualité du processus
[Termes IGN] reconstruction d'objet
[Termes IGN] scène urbaine
[Termes IGN] semis de pointsRésumé : (auteur) This paper addresses the evaluation of algorithms reconstructing a watertight surface from a point cloud acquired on an open scene. The objective is to set a rigorous protocol measuring the quality of the reconstruction and to propose a quality metric that is informative with respect to the various qualities that such an algorithm should have, and in particular its capacity to interpolate and extrapolate accurately. Our approach aims at being more informative and rigorous than previous works on this topic. In addition, we use publicly available data and our implementation is open-source. We argue that a rigorous evaluation of surface reconstruction of open scenes needs to be performed on synthetic data where a perfect continuous ground truth surface is available, so we developed our own LiDAR simulator of which we give a description in the present paper. Numéro de notice : C2021-014 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-369-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-369-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98065
Titre : A new stereo dense matching benchmark dataset for deep learning Type de document : Article/Communication Auteurs : Teng Wu , Auteur ; Bruno Vallet , Auteur ; Marc Pierrot-Deseilligny , Auteur ; Ewelina Rupnik , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : AI4GEO / Vallet, Bruno Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 405 - 412 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de données localisées
[Termes IGN] appariement dense
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] jeu de données localisées
[Termes IGN] parangonnage
[Termes IGN] photogrammétrie aérienne
[Termes IGN] reconstruction 3DRésumé : (auteur) Stereo dense matching is a fundamental task for 3D scene reconstruction. Recently, deep learning based methods have proven effective on some benchmark datasets, for example Middlebury and KITTI stereo. However, it is not easy to find a training dataset for aerial photogrammetry. Generating ground truth data for real scenes is a challenging task. In the photogrammetry community, many evaluation methods use digital surface models (DSM) to generate the ground truth disparity for the stereo pairs, but in this case interpolation may bring errors in the estimated disparity. In this paper, we publish a stereo dense matching dataset based on ISPRS Vaihingen dataset, and use it to evaluate some traditional and deep learning based methods. The evaluation shows that learning-based methods outperform traditional methods significantly when the fine tuning is done on a similar landscape. The benchmark also investigates the impact of the base to height ratio on the performance of the evaluated methods. The dataset can be found in https://github.com/whuwuteng/benchmark_ISPRS2021. Numéro de notice : C2021-012 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-405-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-405-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98066 Planar polygons detection in lidar scans based on sensor topology enhanced Ransac / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkCartographie sémantique hybride de scènes urbaines à partir de données image et Lidar / Mohamed Boussaha (2020)PermalinkPermalinkMoving objects aware sensor mesh fusion for indoor reconstruction from a couple of 2D lidar scans / Teng Wu (2020)PermalinkSimplicial complexes reconstruction and generalisation of 3d lidar data in urban scenes / Stéphane Guinard (2020)PermalinkPiecewise-planar approximation of large 3D data as graph-structured optimization / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-2/W5 (May 2019)PermalinkLa démarche GéoBIM : de la gestion du territoire à celle d’un bâtiment / Dimitri Sarafinof in Responsabilité et environnement, n° 94 (Avril 2019)PermalinkPermalinkRecalage conjoint de données de cartographie mobile et de modèles 3D de bâtiments / Miloud Mezian (2019)PermalinkWeighted simplicial complex reconstruction from mobile laser scanning using sensor topology / Stéphane Guinard in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)Permalink
Senior researcher, head of ACTE team inside LaSTIG (ex MATIS) since 2008