Détail de l'auteur
Auteur Thomas Gruber |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Remote sensing by satellite gravimetry Type de document : Monographie Auteurs : Thomas Gruber, Éditeur scientifique ; Annette Eicker, Éditeur scientifique ; Frank Flechtner, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 286 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-0365-0009-6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bilan de masse
[Termes IGN] CHAMP (satellite)
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] géocentre
[Termes IGN] gradient de gravitation
[Termes IGN] gravimétrie spatiale
[Termes IGN] nivellement par GPS
[Termes IGN] orbitographie
[Termes IGN] télémétrie laser sur satelliteRésumé : (auteur) Over the last two decades, satellite gravimetry has become a new remote sensing technique that provides a detailed global picture of the physical structure of the Earth. With the CHAMP, GRACE, GOCE and GRACE Follow-On missions, mass distribution and mass transport in the Earth system can be systematically observed and monitored from space. A wide range of Earth science disciplines benefit from these data, enabling improvements in applied models, providing new insights into Earth system processes (e.g., monitoring the global water cycle, ice sheet and glacier melting or sea-level rise) or establishing new operational services. Long time series of mass transport data are needed to disentangle anthropogenic and natural sources of climate change impacts on the Earth system. In order to secure sustained observations on a long-term basis, space agencies and the Earth science community are currently planning future satellite gravimetry mission concepts to enable higher accuracy and better spatial and temporal resolution. This Special Issue provides examples of recent improvements in gravity observation techniques and data processing and analysis, applications in the fields of hydrology, glaciology and solid Earth based on satellite gravimetry data, as well as concepts of future satellite constellations for monitoring mass transport in the Earth system. Note de contenu : 1- The GFZ GRACE RL06 monthly gravity field time series: Processing details and quality assessment
2- SLR, GRACE and swarm gravity field determination and combination
3- A new approach to Earth’s gravity field modeling using GPS-derived kinematic orbits and baselines
4- Improved estimates of geocenter variability from time-variable gravity and ocean model outputs
5- An assessment of the GOCE high-level processing facility (HPF) released global geopotential models with regional test results in Turkey
6- Next-generation gravity missions: Sino-European numerical simulation comparison exercise
7- Combination analysis of future polar-type gravity mission and GRACE follow-on
8- Gravity field recovery using high-precision, high–low inter-satellite links
9- High-resolution mass trends of the Antarctic ice sheet through a spectral combination of satellite gravimetry and radar altimetry observations
10- The rapid and steady mass loss of the Patagonian icefields throughout the GRACE era: 2002–2017
11- Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system
12- Hydrologic mass changes and their implications in Mediterranean-climate Turkey from GRACE measurements
13- GOCE-derived coseismic gravity gradient changes caused by the 2011 Tohoku-Oki earthquakeNuméro de notice : 28391 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0009-6 En ligne : https://doi.org/10.3390/books978-3-0365-0009-6 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98720 Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space / Roland Pail in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space Type de document : Article/Communication Auteurs : Roland Pail, Auteur ; Jonathan Bamber, Auteur ; Richard Biancale, Auteur ; Rory Bingham, Auteur ; Carla Braitenberg, Auteur ; Annette Eicker, Auteur ; Frank Flechtner, Auteur ; Thomas Gruber, Auteur ; Andreas Güntner, Auteur ; Gerhard Heinzel, Auteur ; Martin Horwath, Auteur ; Laurent Longuevergne, Auteur ; J. Muller, Auteur ; Isabelle Panet , Auteur ; Hubert Savenije, Auteur ; S. Seneviratne, Auteur ; Nico Sneeuw, Auteur ; Tonie M. van Dam, Auteur ; Bert Wouters, Auteur Année de publication : 2019 Projets : 1-Pas de projet / Article en page(s) : pp 48 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] gravimétrie spatiale
[Termes IGN] harmonique sphérique
[Termes IGN] masseRésumé : (auteur) As changes in gravity are directly related to mass variability, satellite missions observing the Earth’s time varying gravity field are a unique tool for observing mass transport processes in the Earth system, such as the water cycle, rapid changes in the cryosphere, oceans, and solid Earth processes, on a global scale. The observation of Earth’s gravity field was successfully performed by the GRACE and GOCE satellite missions, and will be continued by the GRACE Follow-On mission. A comprehensive team of European scientists proposed the next-generation gravity field mission MOBILE in response to the European Space Agency (ESA) call for a Core Mission in the frame of Earth Explorer 10 (EE10). MOBILE is based on the innovative observational concept of a high-low tracking formation with micrometer ranging accuracy, complemented by new instrument concepts. Since a high-low tracking mission primarily observes the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic. This geometry significantly reduces artefacts of previous along-track ranging low-low formations (GRACE, GRACE-Follow-On) such as the typical striping patterns. The minimum configuration consists of at least two medium-Earth orbiters (MEOs) at 10000 km altitude or higher, and one low-Earth orbiter (LEO) at 350-400 km. The main instrument is a laser-based distance or distance change measurement system, which is placed at the LEO. The MEOs are equipped either with passive reflectors or transponders. In a numerical closed-loop simulation, it was demonstrated that this minimum configuration is in agreement with the threshold science requirements of 5 mm equivalent water height (EWH) accuracy at 400 km wavelength, and 10 cm EWH at 200 km. MOBILE provides promising potential future perspectives by linking the concept to existing space infrastructure such as Galileo next-generation, as future element of the Copernicus/Sentinel programme, and holds the potential of miniaturization even up to swarm configurations. As such MOBILE can be considered as a precursor and role model for a sustained mass transport observing system from space. Numéro de notice : A2019-635 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2019-0006 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1515/jogs-2019-0006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95454
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 48 - 58[article]Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space / Isabelle Panet in Surveys in Geophysics, vol 34 n° 2 (March 2013)
[article]
Titre : Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space Type de document : Article/Communication Auteurs : Isabelle Panet , Auteur ; J. Flury, Auteur ; Richard Biancale, Auteur ; Thomas Gruber, Auteur ; J. Johannessen, Auteur ; M.R. van der Broeke, Auteur ; Tonie M. van Dam, Auteur ; P. Gegout, Auteur ; C. Hughes, Auteur ; Guillaume Ramillien, Auteur ; I. Sasgen, Auteur ; L. Seoane, Auteur ; M. Thomas, Auteur Année de publication : 2013 Article en page(s) : pp 141 - 163 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GRACE
[Termes IGN] gravimétrie spatiale
[Termes IGN] interférométrie à très grande base
[Termes IGN] masse d'eau
[Termes IGN] mission spatiale
[Termes IGN] satellite de télémétrie
[Termes IGN] Terre (planète)Résumé : (auteur) In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within and between the Earth’s various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions. Numéro de notice : A2013-814 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10712-012-9209-8 Date de publication en ligne : 31/10/2012 En ligne : http://dx.doi.org/10.1007/s10712-012-9209-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80127
in Surveys in Geophysics > vol 34 n° 2 (March 2013) . - pp 141 - 163[article]GOCE gravitational gradients along the orbit / Johannes Bouman in Journal of geodesy, vol 85 n° 11 (November /2011)
[article]
Titre : GOCE gravitational gradients along the orbit Type de document : Article/Communication Auteurs : Johannes Bouman, Auteur ; S. Fiorot, Auteur ; M. Fuchs, Auteur ; Thomas Gruber, Auteur Année de publication : 2011 Article en page(s) : pp 791 - 805 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] GOCE
[Termes IGN] gradient de gravitationRésumé : (Auteur) GOCE is ESA’s gravity field mission and the first satellite ever that measures gravitational gradients in space, that is, the second spatial derivatives of the Earth’s gravitational potential. The goal is to determine the Earth’s mean gravitational field with unprecedented accuracy at spatial resolutions down to 100 km. GOCE carries a gravity gradiometer that allows deriving the gravitational gradients with very high precision to achieve this goal. There are two types of GOCE Level 2 gravitational gradients (GGs) along the orbit: the gravitational gradients in the gradiometer reference frame (GRF) and the gravitational gradients in the local north oriented frame (LNOF) derived from the GGs in the GRF by point-wise rotation. Because the V XX , V YY , V ZZ and V XZ are much more accurate than V XY and V YZ , and because the error of the accurate GGs increases for low frequencies, the rotation requires that part of the measured GG signal is replaced by model signal. However, the actual quality of the gradients in GRF and LNOF needs to be assessed. We analysed the outliers in the GGs, validated the GGs in the GRF using independent gravity field information and compared their assessed error with the requirements. In addition, we compared the GGs in the LNOF with state-of-the-art global gravity field models and determined the model contribution to the rotated GGs. We found that the percentage of detected outliers is below 0.1% for all GGs, and external gravity data confirm that the GG scale factors do not differ from one down to the 10-3 level. Furthermore, we found that the error of V XX and V YY is approximately at the level of the requirement on the gravitational gradient trace, whereas the V ZZ error is a factor of 2–3 above the requirement for higher frequencies. We show that the model contribution in the rotated GGs is 2–35% dependent on the gravitational gradient. Finally, we found that GOCE gravitational gradients and gradients derived from EIGEN-5C and EGM2008 are consistent over the oceans, but that over the continents the consistency may be less, especially in areas with poor terrestrial gravity data. All in all, our analyses show that the quality of the GOCE gravitational gradients is good and that with this type of data valuable new gravity field information is obtained. Numéro de notice : A2011-468 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-011-0464-0 Date de publication en ligne : 18/10/2011 En ligne : https://doi.org/10.1007/s00190-011-0464-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31362
in Journal of geodesy > vol 85 n° 11 (November /2011) . - pp 791 - 805[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-2011111 RAB Revue Centre de documentation En réserve L003 Disponible Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons / Thomas Gruber in Journal of geodesy, vol 85 n° 11 (November /2011)
[article]
Titre : Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons Type de document : Article/Communication Auteurs : Thomas Gruber, Auteur ; P. Visser, Auteur ; C. Ackermann, Auteur ; M. Hosse, Auteur Année de publication : 2011 Article en page(s) : pp 845 - 860 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse comparative
[Termes IGN] analyse de variance
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] géoïde gravimétrique
[Termes IGN] géoïde terrestre
[Termes IGN] harmonique sphérique
[Termes IGN] limite de résolution géométrique
[Termes IGN] orbitographie
[Termes IGN] résiduRésumé : (Auteur) Three GOCE-based gravity field solutions have been computed by ESA’s high-level processing facility and were released to the user community. All models are accompanied by variance-covariance information resulting either from the least squares procedure or a Monte-Carlo approach. In order to obtain independent external quality parameters and to assess the current performance of these models, a set of independent tests based on satellite orbit determination and geoid comparisons is applied. Both test methods can be regarded as complementary because they either investigate the performance in the long wavelength spectral domain (orbit determination) or in the spatial domain (geoid comparisons). The test procedure was applied to the three GOCE gravity field solutions and to a number of selected pre-launch models for comparison. Orbit determination results suggest, that a pure GOCE gravity field model does not outperform the multi-year GRACE gravity field solutions. This was expected as GOCE is designed to improve the determination of the medium to high frequencies of the Earth gravity field (in the range of degree and order 50 to 200). Nevertheless, in case of an optimal combination of GOCE and GRACE data, orbit determination results should not deteriorate. So this validation procedure can also be used for testing the optimality of the approach adopted for producing combined GOCE and GRACE models. Results from geoid comparisons indicate that with the 2 months of GOCE data a significant improvement in the determination of the spherical harmonic spectrum of the global gravity field between degree 50 and 200 can be reached. Even though the ultimate mission goal has not yet been reached, especially due to the limited time span of used GOCE data (only 2 months), it was found that existing satellite-only gravity field models, which are based on 7 years of GRACE data, can already be enhanced in terms of spatial resolution. It is expected that with the accumulation of more GOCE data the gravity field model resolution and quality can be further enhanced, and the GOCE mission goal of 1–2 cm geoid accuracy with 100 km spatial resolution can be achieved. Numéro de notice : A2011-470 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-011-0486-7 Date de publication en ligne : 08/06/2011 En ligne : https://doi.org/10.1007/s00190-011-0486-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31364
in Journal of geodesy > vol 85 n° 11 (November /2011) . - pp 845 - 860[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-2011111 RAB Revue Centre de documentation En réserve L003 Disponible