Détail de l'auteur
Auteur M. Neubert |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction / R. Beger in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 6 supplement (December 2011)
[article]
Titre : Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction Type de document : Article/Communication Auteurs : R. Beger, Auteur ; C. Gedrange, Auteur ; Robert Hecht, Auteur ; M. Neubert, Auteur Année de publication : 2011 Article en page(s) : pp 40 - 51 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] axe médian
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] image aérienne
[Termes IGN] lasergrammétrie
[Termes IGN] orthoimage
[Termes IGN] précision des données
[Termes IGN] semis de points
[Termes IGN] voie ferréeRésumé : (Auteur) The quality of remotely sensed data in regards of accuracy and resolution has considerably improved in recent years. Very small objects are detectable by means of imaging and laser scanning, yet there are only few studies to use such data for large scale mapping of railroad infrastructure. In this paper, an approach is presented that integrates extremely high resolution ortho-imagery and dense airborne laser scanning point clouds. These data sets are used to reconstruct railroad track centre lines. A feature level data fusion is carried out in order to combine the advantages of both data sets and to achieve a maximum of accuracy and completeness. The workflow consists of three successive processing steps. First, object-based image analysis is used to derive a railroad track mask from ortho-imagery. This spatial location information is then combined with the height information to classify the laser points. Lastly, the location of railroad track centre lines from these classified points were approximated using a feature extraction method based on an adapted random sample consensus algorithm. This workflow is tested on two railroad sections and was found to deliver very accurate results in a quickly and highly automated manner. Numéro de notice : A2011-517 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2011.09.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2011.09.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31411
in ISPRS Journal of photogrammetry and remote sensing > vol 66 n° 6 supplement (December 2011) . - pp 40 - 51[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2011071 SL Revue Centre de documentation Revues en salle Disponible