Détail de l'auteur
Auteur George Grekousis |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
[article]
Titre : Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation Type de document : Article/Communication Auteurs : George Grekousis, Auteur Année de publication : 2021 Article en page(s) : pp 152 - 174 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification floue
[Termes IGN] données démographiques
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] pondération
[Termes IGN] régression géographiquement pondérée
[Termes IGN] santé
[Termes IGN] segmentation
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Fuzzy geographically weighted clustering has been proposed as an approach for improving fuzzy c-means algorithm when applied to geodemographic analysis. This clustering method allows a spatial entity to belong to more than one cluster with varying degrees, namely, membership values. Although fuzzy geographically weighted clustering attempts to create geographically aware clusters, it partially fails to trace spatial dependence and heterogeneity because, as a global metric, the membership values are calculated across the entire set of spatial entities. Here we introduce the first local version of fuzzy geographically weighted clustering, ‘local fuzzy geographically weighted clustering.’ In local fuzzy geographically weighted clustering, the membership values of a spatial entity are updated only according to the membership values of the spatial entities within its neighborhood and not across the entire set of entities, as originally proposed by the global metric. Additionally, we apply particle swarm optimization meta-heuristic to overcome the random initialization problem regarding the fuzzy c-means algorithm. To evaluate our method we compare local fuzzy geographically weighted clustering to global fuzzy geographically weighted clustering using a cancer incident benchmark dataset for Manhattan, New York. The results show that local fuzzy geographically weighted clustering outperforms the global version in all experimental settings. Numéro de notice : A2021-022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808221 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808221 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96525
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 152 - 174[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021011 SL Revue Centre de documentation Revues en salle Disponible A fuzzy index for detecting spatiotemporal outliers / George Grekousis in Geoinformatica, vol 16 n° 3 (July 2012)
[article]
Titre : A fuzzy index for detecting spatiotemporal outliers Type de document : Article/Communication Auteurs : George Grekousis, Auteur ; Y. Fotis, Auteur Année de publication : 2012 Article en page(s) : pp 597 - 619 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] détection automatique
[Termes IGN] indexation spatiale
[Termes IGN] logique floue
[Termes IGN] valeur aberranteRésumé : (Auteur) The detection of spatial outliers helps extract important and valuable information from large spatial datasets. Most of the existing work in outlier detection views the condition of being an outlier as a binary property. However, for many scenarios, it is more meaningful to assign a degree of being an outlier to each object. The temporal dimension should also be taken into consideration. In this paper, we formally introduce a new notion of spatial outliers. We discuss the spatiotemporal outlier detection problem, and we design a methodology to discover these outliers effectively. We introduce a new index called the fuzzy outlier index, Foi, which expresses the degree to which a spatial object belongs to a spatiotemporal neighbourhood. The proposed outlier detection method can be applied to phenomena evolving over time, such as moving objects, pedestrian modelling or credit card fraud. Numéro de notice : A2012-111 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-011-0145-4 Date de publication en ligne : 12/10/2011 En ligne : https://doi.org/10.1007/s10707-011-0145-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31559
in Geoinformatica > vol 16 n° 3 (July 2012) . - pp 597 - 619[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2012031 RAB Revue Centre de documentation En réserve L003 Disponible