Détail de l'auteur
Auteur Sébastien Mustière
Commentaire :
Autorités liées :
idHAL :
pas d'identifiant
idRef :
autre URL :
ORCID :
Scopus :
G. Scholar :
DBLP URL :
|
Documents disponibles écrits par cet auteur (117)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Automatic vectorization of fluvial corridor features on historical maps to assess riverscape changes / Samuel Dunesme in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)
[article]
Titre : Automatic vectorization of fluvial corridor features on historical maps to assess riverscape changes Type de document : Article/Communication Auteurs : Samuel Dunesme , Auteur ; Hervé Piegay, Auteur ; Sébastien Mustière , Auteur Année de publication : 2022 Projets : EUR H20'Lyon / Article en page(s) : pp 512 - 527 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] automatisation
[Termes IGN] carte ancienne
[Termes IGN] couleur (rédaction cartographique)
[Termes IGN] cours d'eau
[Termes IGN] détection de changement
[Termes IGN] Institut national de l'information géographique et forestière (France)
[Termes IGN] réseau fluvial
[Termes IGN] réseau hydrographique
[Termes IGN] vectorisationRésumé : (auteur) The vectorization of historical maps is an important scientific issue for understanding the dynamics of change recorded by territories. Historical maps are potentially an excellent source of data for characterizing river changes at large scales. The use of vectorized data is essential for such characterization, as well as for highlighting changes in the planform alignment of such reaches over time. At a regional network scale of several thousand kilometers of river, such work requires the vectorization of several hundred or even thousands of maps. This work proposes an automated vectorization procedure for the hydrographic network detailed in the cartographic resources of the IGN (the French National Mapping Agency). The ultimate goal is to use these historical maps to track the planform evolution of the elementary landscape units (water, bare banks, and riparian vegetation) that constitute river corridors at the basin network scale. The Historical Maps Vectorization Toolbox was developed to automatically vectorize river corridor objects (sediment banks, water surfaces, and vegetation polygons) with a high level of accuracy. The toolbox works with a 2-step process: first it classifies the colors detected on the map, then it reconstructs the objects of the fluvial corridor. We also demonstrate a practical use of the toolbox through measuring changes in the surface area of river networks of several hundred kilometers. Numéro de notice : A2022-604 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2091661 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.1080/15230406.2022.2091661 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102073
in Cartography and Geographic Information Science > vol 49 n° 6 (November 2022) . - pp 512 - 527[article]Assessing historical maps for characterizing fluvial corridor changes at a regional network scale / Samuel Dunesme in Cartographica, vol 55 n° 4 (Winter 2020)
[article]
Titre : Assessing historical maps for characterizing fluvial corridor changes at a regional network scale Type de document : Article/Communication Auteurs : Samuel Dunesme , Auteur ; Hervé Piegay, Auteur ; Sébastien Mustière , Auteur Année de publication : 2020 Projets : EUR H20'Lyon / Article en page(s) : pp 251 - 265 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] analyse diachronique
[Termes IGN] base de données historiques
[Termes IGN] base de données topographiques
[Termes IGN] carte de base
[Termes IGN] corridor biologique
[Termes IGN] données hydrographiques
[Termes IGN] géomorphologie
[Termes IGN] rivière
[Termes IGN] trame bleue
[Termes IGN] vectorisation
[Termes IGN] vingtième siècleRésumé : (Auteur) Fluvial corridor quality assessment requires that historical data be collected at a regional scale. In this article, our goal is to assess potential map resources to explore riverscape changes at a regional network scale and to define key issues in using an automated vectorization protocol to characterize such changes on such a large scale. We consider IGN’s Nouvelle Carte de France a potentially good resource for our objective of two-date (oldest + actual vector database) comparisons on 1:20,000–1:25,000 scale maps, notably when applied at a regional scale. The French IGN corpus is a good example of topographic maps that were produced in the twentieth century in Europe with fairly homogeneous data over a whole national territory. Moreover, the digitization and georeferencing processes applied by IGN are very accurate. The evolution of conventional features is not as significant for the hydrographic theme and should not be a problem for automatic vectorization. The potential temporal coverage is from 1922 to 1993, but the complexity of the sheet divisions, partial revisions, and the heterogeneity of coverage over time prevent multidate analysis. Numéro de notice : A2020-775 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3138/cart-2019-0025 Date de publication en ligne : 22/12/2020 En ligne : https://hal.science/hal-03371776v1 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96689
in Cartographica > vol 55 n° 4 (Winter 2020) . - pp 251 - 265[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 031-2020041 SL Revue Centre de documentation Revues en salle Disponible Mapping the French green infrastructure – an exercise in homogenizing heterogeneous regional data / Lucille Billon in International journal of cartography, Vol 6 n° 2 (July 2020)
[article]
Titre : Mapping the French green infrastructure – an exercise in homogenizing heterogeneous regional data Type de document : Article/Communication Auteurs : Lucille Billon, Auteur ; Cécile Duchêne , Auteur ; Sandrine Gomes, Auteur ; Arnaud Grégoire, Auteur ; Mathilde Kremp, Auteur ; Sébastien Mustière , Auteur ; Romain Sordello, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : pp 241 - 262 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] carte thématique
[Termes IGN] données hétérogènes
[Termes IGN] écosystème
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] harmonisation des données
[Termes IGN] région
[Termes IGN] trame verte et bleueRésumé : (auteur) To preserve and restore ecosystems, public environmental policies on the international level now encourage the creation of Green Infrastructure, i.e. networks composed of areas where animal and vegetal species can live (habitat patches) and corridors to circulate between them. In France, each regions, the first subnational administrative level, identified existing habitat patches and corridors in their territories using flexible guidelines. This resulted in heterogeneous data, raising the question of their consistent mapping at a supra-regional level. To answer this question, this study first focuses on the habitat patches of two adjacent regions and explores three ways of homogenizing the map. The first method consists in generalizing the more detailed data using morphologic operators. The second method consists in graphically refining the less detailed data by filling the areas with patterns taken from the more detailed data. The third method consists in drastically changing the level of abstraction of the data from both regions by rasterizing the space. Based on those experiments, we applied the most appropriate method to data collected by all the regions of continental France, a step which itself raises new issues concerning data harmonization and parameters settings. Numéro de notice : A2020-374 Affiliation des auteurs : LASTIG+Ext (2016-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2020.1717843 Date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.1080/23729333.2020.1717843 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95306
in International journal of cartography > Vol 6 n° 2 (July 2020) . - pp 241 - 262[article]Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)
[article]
Titre : Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Arnaud Le Guilcher , Auteur ; Guillaume Saint Pierre, Auteur ; Mohammad Ghasemi Hamed, Auteur ; Sébastien Mustière , Auteur ; Olivier Orfila, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : pp 101 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse fonctionnelle (mathématiques)
[Termes IGN] apprentissage profond
[Termes IGN] carte routière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] détection d'objet
[Termes IGN] données routières
[Termes IGN] feu de circulation
[Termes IGN] inférence
[Termes IGN] reconnaissance de formes
[Termes IGN] signalisation routière
[Termes IGN] trace GPS
[Termes IGN] trafic routier
[Termes IGN] transformation en ondelettes
[Termes IGN] vitesseRésumé : (auteur) The increasing availability of large-scale global positioning system data stemming from in-vehicle-embedded terminal devices enables the design of methods deriving road network cartographic information from drivers’ recorded traces. Some machine learning approaches have been proposed in the past to train automatic road network map inference, and recently this approach has been successfully extended to infer road attributes as well, such as speed limitation or number of lanes. In this paper, we address the problem of detecting traffic signals from a set of vehicle speed profiles, under a classification perspective. Each data instance is a speed versus distance plot depicting over a hundred profiles on a 100-m-long road span. We proposed three different ways of deriving features: The first one relies on the raw speed measurements; the second one uses image recognition techniques; and the third one is based on functional data analysis. We input them into most commonly used classification algorithms, and a comparative analysis demonstrated that a functional description of speed profiles with wavelet transforms seems to outperform the other approaches with most of the tested classifiers. It also highlighted that random forests yield an accurate detection of traffic signals, regardless of the chosen feature extraction method, while keeping a remarkably low confusion rate with stop signs. Numéro de notice : A2020-336 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41060-019-00197-x Date de publication en ligne : 04/10/2019 En ligne : https://doi.org/10.1007/s41060-019-00197-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93755
in International Journal of Data Science and Analytics JDSA > vol 10 n° 1 (June 2020) . - pp 101 - 119[article]Documents numériques
peut être téléchargé
Traffic signal detection ... - preprintAdobe Acrobat PDF Comparing supervised learning algorithms for Spatial Nominal Entity recognition / Amine Medad (2020)
Titre : Comparing supervised learning algorithms for Spatial Nominal Entity recognition Type de document : Article/Communication Auteurs : Amine Medad, Auteur ; Mauro Gaio, Auteur ; Ludovic Moncla , Auteur ; Sébastien Mustière , Auteur ; Yannick Le Nir, Auteur Editeur : Göttingen : Copernicus publications Année de publication : 2020 Collection : AGILE GIScience Series num. vol 1 Projets : 1-Pas de projet / Conférence : AGILE 2020, 23rd AGILE Conference on Geographic Information Science 16/06/2020 19/06/2020 Chania - Crète Grèce OA Proceedings Importance : 18 p. Format : 21 x 30 cm Note générale : biblographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse comparative
[Termes IGN] entité géographique
[Termes IGN] recherche d'information géographique
[Termes IGN] reconnaissance de noms
[Termes IGN] traitement du langage naturelRésumé : (auteur) Discourse may contain both named and nominal entities. Most common nouns or nominal mentions in natural language do not have a single, simple meaning but rather a number of related meanings. This form of ambiguity led to the development of a task in natural language processing known as Word Sense Disambiguation. Recognition and categorisation of named and nominal entities is an essential step for Word Sense Disambiguation methods. Up to now, named entity recognition and categorisation systems mainly focused on the annotation, categorisation and identification of named entities. This paper focuses on the annotation and the identification of spatial nominal entities. We explore the combination of Transfer Learning principle and supervised learning algorithms, in order to build a system to detect spatial nominal entities. For this purpose, different supervised learning algorithms are evaluated with three different context sizes on two manually annotated datasets built from Wikipedia articles and hiking description texts. The studied algorithms have been selected for one or more of their specific properties potentially useful in solving our problem. The results of the first phase of experiments reveal that the selected algorithms have similar performances in terms of ability to detect spatial nominal entities. The study also confirms the importance of the size of the window to describe the context, when word-embedding principle is used to represent the semantics of each word. Numéro de notice : C2020-013 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/agile-giss-1-15-2020 Date de publication en ligne : 15/07/2020 En ligne : https://doi.org/10.5194/agile-giss-1-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95688 Potential of crowdsourced traces for detecting updates in authoritative geographic data / Stefan Ivanovic (2020)PermalinkA filtering-based approach for improving crowdsourced GNSS traces in a data update context / Stefan Ivanovic in ISPRS International journal of geo-information, vol 8 n° 9 (September 2019)PermalinkMéthodes d'apprentissage statistique pour la détection de la signalisation routière à partir de véhicules traceurs / Yann Méneroux (2019)Permalink3D urban data to assess local urban regulation influence / Mickaël Brasebin in Computers, Environment and Urban Systems, vol 68 (March 2018)PermalinkAppariement automatique de données hétérogènes: textes, traces GPS et ressources géographiques / Amine Medad (2018)PermalinkDetection and localization of traffic signals with GPS floating car data and Random Forest / Yann Méneroux (2018)PermalinkQuality based approach for updating geographic authoritative datasets from crowdsourced GPS traces / Stefan Ivanovic (2018)PermalinkUtilisation de véhicules traceurs pour la détection et la localisation de l'infrastructure routière par apprentissage automatique / Yann Méneroux (2018)PermalinkCartographie nationale de données régionales hétérogénes : le cas des trames vertes et bleues [Projet d'initiation à la recherche] / Sandrine Gomes (2017)PermalinkFrom relative to absolute location for locating victims in mountain area - A preliminary study / Ana-Maria Olteanu-Raimond (2017)Permalink
Senior researcher and lecturer in LaSTIG, MEIG team
HDR defense in 2014
Head of COGIT lab from 2011 to 2018