Détail de l'auteur
Auteur R. Lunetta |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points / Y. Shao in ISPRS Journal of photogrammetry and remote sensing, vol 70 (June 2012)
[article]
Titre : Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points Type de document : Article/Communication Auteurs : Y. Shao, Auteur ; R. Lunetta, Auteur Année de publication : 2012 Article en page(s) : pp 78 - 87 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] classification dirigée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Terra-MODIS
[Termes IGN] occupation du sol
[Termes IGN] Perceptron multicouche
[Termes IGN] série temporelleRésumé : (Auteur) Support vector machine (SVM) was applied for land-cover characterization using MODIS time-series data. Classification performance was examined with respect to training sample size, sample variability, and landscape homogeneity (purity). The results were compared to two conventional nonparametric image classification algorithms: multilayer perceptron neural networks (NN) and classification and regression trees (CART). For 2001 MODIS time-series data, SVM generated overall accuracies ranging from 77% to 80% for training sample sizes from 20 to 800 pixels per class, compared to 67–76% and 62–73% for NN and CART, respectively. These results indicated that SVM’s had superior generalization capability, particularly with respect to small training sample sizes. There was also less variability of SVM performance when classification trials were repeated using different training sets. Additionally, classification accuracies were directly related to sample homogeneity/heterogeneity. The overall accuracies for the SVM algorithm were 91% (Kappa = 0.77) and 64% (Kappa = 0.34) for homogeneous and heterogeneous pixels, respectively. The inclusion of heterogeneous pixels in the training sample did not increase overall accuracies. Also, the SVM performance was examined for the classification of multiple year MODIS time-series data at annual intervals. Finally, using only the SVM output values, a method was developed to directly classify pixel purity. Approximately 65% of pixels within the Albemarle–Pamlico Basin study area were labeled as “functionally homogeneous” with an overall classification accuracy of 91% (Kappa = 0.79). The results indicated a high potential for regional scale operational land-cover characterization applications. Numéro de notice : A2012-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2012.04.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2012.04.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31736
in ISPRS Journal of photogrammetry and remote sensing > vol 70 (June 2012) . - pp 78 - 87[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2012041 SL Revue Centre de documentation Revues en salle Disponible