Détail de l'auteur
Auteur Y. Shi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An automated approach for updating land cover maps based on integrated change detection and classification methods / X. Chen in ISPRS Journal of photogrammetry and remote sensing, vol 71 (July 2012)
[article]
Titre : An automated approach for updating land cover maps based on integrated change detection and classification methods Type de document : Article/Communication Auteurs : X. Chen, Auteur ; J. Chen, Auteur ; Y. Shi, Auteur ; Yasushi Yamaguchi, Auteur Année de publication : 2012 Article en page(s) : pp 86 - 95 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] champ aléatoire de Markov
[Termes IGN] Chensi (Chine)
[Termes IGN] détection de changement
[Termes IGN] image Landsat-ETM+
[Termes IGN] mise à jour de base de donnéesRésumé : (Auteur) Updating land cover maps from remotely sensed data in a timely manner is important for many areas of scientific research. Unfortunately, traditional classification procedures are very labor intensive and subjective because of the required human interaction. Based on the strategy of updating land cover data only for the changed area, we proposed an integrated, automated approach to update land cover maps without human interaction. The proposed method consists primarily of the following three parts: a change detection technique, a Markov Random Fields (MRFs) model, and an iterated training sample selecting procedure. In the proposed approach, remotely sensed data acquired in different seasons or from different remote sensors can be used. Meanwhile, the approach is completely unsupervised. Therefore, the methodology has a wide scope of application. A case study of Landsat data was conducted to test the performance of this method. The experimental results show that several sub-modules in this method work effectively and that reasonable classification accuracy can be achieved. Numéro de notice : A2012-350 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2012.05.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2012.05.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31796
in ISPRS Journal of photogrammetry and remote sensing > vol 71 (July 2012) . - pp 86 - 95[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2012051 SL Revue Centre de documentation Revues en salle Disponible