Geocarto international . vol 25 n° 3Paru le : 01/06/2010 ISBN/ISSN/EAN : 1010-6049 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
059-2010031 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierSnow permitivity retrieval inversion algorithm for estimating snow wetness / G. Singh in Geocarto international, vol 25 n° 3 (June 2010)
[article]
Titre : Snow permitivity retrieval inversion algorithm for estimating snow wetness Type de document : Article/Communication Auteurs : G. Singh, Auteur ; G. Venkataraman, Auteur Année de publication : 2010 Article en page(s) : pp 187 - 212 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] constante diélectrique
[Termes IGN] image Envisat-ASAR
[Termes IGN] modèle d'inversion
[Termes IGN] neige
[Termes IGN] prévention des risques
[Termes IGN] rétrodiffusion
[Termes IGN] surveillance hydrologique
[Termes IGN] traitement d'imageRésumé : (Auteur) The environmental satellite (ENVISAT) advanced synthetic aperture radar (ASAR) offers the opportunity for monitoring snow parameters with dual polarization and multi-incidence angle. Snow wetness is an important index for indicating snow avalanche, snowmelt runoff modelling, water supply for irrigation and hydropower stations, weather forecasts and understanding climate change. We used a first-order scattering model that includes both volume and air/snow surface scattering based on a developed inversion model to estimate snow dielectric constant, which can be further related for estimating snow wetness. Comparison with field measurement showed that the correlation coefficient for snow permittivity estimated from ASAR data was observed to be 0.8 at 95% confidence interval and model bias was observed as 2.42% by volume at 95% confidence interval. The comparison of ASAR-derived snow permittivity with ground measurements shows the average absolute error 2.5%. The snow wetness range varies from 0 to 15% by volume. Numéro de notice : A2010-266 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106040903486130 Date de publication en ligne : 18/02/2010 En ligne : https://doi.org/10.1080/10106040903486130 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30460
in Geocarto international > vol 25 n° 3 (June 2010) . - pp 187 - 212[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2010031 RAB Revue Centre de documentation En réserve L003 Disponible Urban growth monitoring using remote sensing and geographic information system: a case study in the Twin Cities metropolitain area, Minnesota / F. Yuan in Geocarto international, vol 25 n° 3 (June 2010)
[article]
Titre : Urban growth monitoring using remote sensing and geographic information system: a case study in the Twin Cities metropolitain area, Minnesota Type de document : Article/Communication Auteurs : F. Yuan, Auteur Année de publication : 2010 Article en page(s) : pp 213 - 230 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] croissance urbaine
[Termes IGN] image Landsat
[Termes IGN] Minneapolis (Minnesota)
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] modèle de Markov
[Termes IGN] périphérie urbaine
[Termes IGN] prévision
[Termes IGN] simulation
[Termes IGN] système d'information géographique
[Termes IGN] utilisation du solRésumé : (Auteur) This study investigates urban growth dynamics from regional to local scales in the Twin Cities Metropolitan Area and demonstrates how metropolitan growth can be driven by policies. Urban change from 1975 to 2006 was detected using Landsat imagery. Future growth in 2030 was modelled based on two scenarios with or without regional development policies incorporated. City- or township-level growth was examined by a zonal analysis. Results show urban grew 126,700 ha from 1975 to 2006. The Markov-Cellular Automata model projected at least another 67,000 ha of urban growth from 2006 to 2030. When regional development policies were incorporated, homogeneous and compact growth patterns were predicted along the urban periphery; however, actual land supplies within the cities along the urban edge are facing challenges to accommodate the projected growth as large portions of suitable lands are located outside of the 2030 Municipal Urban Service Area boundary. Numéro de notice : A2010-267 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106040903108445 Date de publication en ligne : 10/07/2009 En ligne : https://doi.org/10.1080/10106040903108445 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30461
in Geocarto international > vol 25 n° 3 (June 2010) . - pp 213 - 230[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2010031 RAB Revue Centre de documentation En réserve L003 Disponible