Geocarto international . vol 27 n° 5Mention de date : August 2012 Paru le : 01/08/2012 ISBN/ISSN/EAN : 1010-6049 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
059-2012051 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierFusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes / J. Im in Geocarto international, vol 27 n° 5 (August 2012)
[article]
Titre : Fusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes Type de document : Article/Communication Auteurs : J. Im, Auteur ; Zhong Lu, Auteur ; J. Rhee, Auteur ; R. Jensen, Auteur Année de publication : 2012 Article en page(s) : pp 373 - 393 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] classification par réseau neuronal
[Termes IGN] données lidar
[Termes IGN] entropie
[Termes IGN] image AISA+
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] milieu urbain
[Termes IGN] New York (Etats-Unis ; état)Résumé : (Auteur) The urban landscape is dynamic and complex. As improved remote sensing data in terms of spatial and spectral characteristics became available, more sophisticated methods have been adopted for urban applications. This study proposed and evaluated a classification model incorporating feature selection, artificial immune networks and parameter optimization. Information gain, a broadly applied feature selection metric used in data mining techniques such as decision trees, was used for feature selection. Two types of information gain – binary-class entropy and multiple-class entropy – were investigated. Artificial immune networks have been recently applied to remote sensing classification and have been proven useful especially when multiple parameters of the networks are optimized through a genetic algorithm. The proposed model was tested for urban classification using hyperspectral (i.e. AISA and Hyperion) and LiDAR data over two urban study sites. Results show that the model considerably reduced processing time (70%) for classification without significant accuracy decrease. Numéro de notice : A2012-369 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2011.642898 Date de publication en ligne : 06/01/2012 En ligne : https://doi.org/10.1080/10106049.2011.642898 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31815
in Geocarto international > vol 27 n° 5 (August 2012) . - pp 373 - 393[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2012051 RAB Revue Centre de documentation En réserve L003 Disponible Hyperspectral band clustering and band selection for urban land cover classification / H. Su in Geocarto international, vol 27 n° 5 (August 2012)
[article]
Titre : Hyperspectral band clustering and band selection for urban land cover classification Type de document : Article/Communication Auteurs : H. Su, Auteur ; Q. Du, Auteur Année de publication : 2012 Article en page(s) : pp 39 - 411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification semi-dirigée
[Termes IGN] image hyperspectrale
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] signature spectrale
[Termes IGN] valeur aberranteRésumé : (Auteur) The aim of this study is to combine band clustering with band selection for dimensionality reduction of hyperspectral imagery. The performance of dimensionality reduction is evaluated through urban land cover classification accuracy with the dimensionality-reduced data. Different from unsupervised clustering using all the pixels or supervised clustering requiring labelled pixels, the discussed semi-supervised band clustering needs class spectral signatures only; band selection result is used as initial condition for band clustering; after clustering, a cluster selection step is applied to select clusters to be used in the following data analysis. In this article, we propose to conduct band selection by removing outlier bands in each cluster before finalizing cluster centres. The experimental results in urban land cover classification show that the proposed algorithm can further enhance support vector machine (SVM)-based classification accuracy. Numéro de notice : A2012-370 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2011.643322 Date de publication en ligne : 12/01/2012 En ligne : https://doi.org/10.1080/10106049.2011.643322 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31816
in Geocarto international > vol 27 n° 5 (August 2012) . - pp 39 - 411[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2012051 RAB Revue Centre de documentation En réserve L003 Disponible Applying six classifiers to airborne hyperspectral imagery for detecting giant reed / C. Yang in Geocarto international, vol 27 n° 5 (August 2012)
[article]
Titre : Applying six classifiers to airborne hyperspectral imagery for detecting giant reed Type de document : Article/Communication Auteurs : C. Yang, Auteur ; J. Goolsby, Auteur ; James H. Everitt, Auteur ; Q. Du, Auteur Année de publication : 2012 Article en page(s) : pp 413 - 424 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] classificateur
[Termes IGN] classification barycentrique
[Termes IGN] classification par la distance de Mahalanobis
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification Spectral angle mapper
[Termes IGN] espèce exotique envahissante
[Termes IGN] Etats-Unis
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] macrophyte
[Termes IGN] Mexique
[Termes IGN] Rio Grande (fleuve)Résumé : (Auteur) This study evaluated and compared six image classifiers, including minimum distance (MD), Mahalanobis distance (MAHD), maximum likelihood (ML), spectral angle mapper (SAM), mixture tuned matched filtering (MTMF) and support vector machine (SVM), for detecting and mapping giant reed (Arundo donax L.), an invasive weed that presents a severe threat to agroecosystems throughout the southern US and northern Mexico. Airborne hyperspectral imagery was collected from a giant reed-infested site along the US-Mexican portion of the Rio Grande in 2009 and 2010. The imagery was transformed with minimum noise fraction (MFN) and the six classifiers were applied to the 30-band MNF imagery for each year. Accuracy assessment showed that SVM and ML generally performed better than the other four classifiers for overall classification and for distinguishing giant reed in both years. These results indicate that airborne hyperspectral imagery in conjunction with SVM and ML classification techniques is effective for detecting giant reed. Numéro de notice : A2012-371 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2011.643321 Date de publication en ligne : 04/01/2012 En ligne : https://doi.org/10.1080/10106049.2011.643321 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31817
in Geocarto international > vol 27 n° 5 (August 2012) . - pp 413 - 424[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2012051 RAB Revue Centre de documentation En réserve L003 Disponible Synthesizing urban remote sensing through application, scale, data and case studies / E.A. Wentz in Geocarto international, vol 27 n° 5 (August 2012)
[article]
Titre : Synthesizing urban remote sensing through application, scale, data and case studies Type de document : Article/Communication Auteurs : E.A. Wentz, Auteur ; D.A. Quattrochi, Auteur ; M. Netzband, Auteur ; S.W. Myint, Auteur Année de publication : 2012 Article en page(s) : pp 425 - 442 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Atlanta (Géorgie)
[Termes IGN] chaleur
[Termes IGN] classification barycentrique
[Termes IGN] classification ISODATA
[Termes IGN] image Landsat-MSS
[Termes IGN] image Landsat-TM
[Termes IGN] image Quickbird
[Termes IGN] image Terra-ASTER
[Termes IGN] milieu urbain
[Termes IGN] Phoenix
[Termes IGN] villeRésumé : (Auteur) This article describes the outcomes of an international workshop on urban remote sensing. The workshop synthesized the needs of remote sensing scientists to better monitor and analyse urban physical and social dynamics. The workshop was held with urban land use forecasting workshop in April 2011 in Arizona. The four major themes of the jointly held workshops were application, data, scale and case studies. Application refers to how data are used to address urban problems. Data refers to the sources and types of raw data available. Scale is the ever-present concern over data reduction and resolution. Case studies examine a single urban area, typically based on one or two primary themes. One outcome was to integrate multiple case studies to form an urban typology. To respond to this need, this article integrates two case studies on the urban heat island in Atlanta, GA and Phoenix, AZ based on the four themes. Numéro de notice : A2012-372 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2012.687400 Date de publication en ligne : 24/05/2012 En ligne : https://doi.org/10.1080/10106049.2012.687400 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31818
in Geocarto international > vol 27 n° 5 (August 2012) . - pp 425 - 442[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2012051 RAB Revue Centre de documentation En réserve L003 Disponible Classification of urban tree species using hyperspectral imagery / R. Jensen in Geocarto international, vol 27 n° 5 (August 2012)
[article]
Titre : Classification of urban tree species using hyperspectral imagery Type de document : Article/Communication Auteurs : R. Jensen, Auteur ; P. Hardin, Auteur ; A. Hardin, Auteur Année de publication : 2012 Article en page(s) : pp 443 - 458 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] analyse en composantes principales
[Termes IGN] arbre (flore)
[Termes IGN] arbre urbain
[Termes IGN] espèce végétale
[Termes IGN] flore urbaine
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] indice de végétation
[Termes IGN] Utah (Etas-Unis)Résumé : (Auteur) Urban areas serve as humanity's principal habitat. Because of this, it is important to understand the biophysical components of the urban environment – including the urban forest. The goal of this study was to determine the potential to classify individual urban trees as a function of spectral features derived from airborne hyperspectral data. To determine this, 500 urban trees were identified (through fieldwork) in the built-up zone of Provo-Orem, Utah, USA. Visible and near infrared airborne hyperspectral imagery was collected over the same area. The 500 trees were identified on the images, and spectral features of each tree were extracted. Principal components, vegetation indices, band means, and band ratios were all used as features to discriminate between different tree species. The tree classification was 82% accurate when just the six principal components were used. Classification accuracy increased to 91.4% after combining vegetation indices, band mean values and band ratios. Numéro de notice : A2012-373 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2012.687400 Date de publication en ligne : 24/05/2012 En ligne : https://doi.org/10.1080/10106049.2012.687400 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31819
in Geocarto international > vol 27 n° 5 (August 2012) . - pp 443 - 458[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2012051 RAB Revue Centre de documentation En réserve L003 Disponible