Détail de l'auteur
Auteur R.J. Murphy |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors / R.J. Murphy in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)
[article]
Titre : Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors Type de document : Article/Communication Auteurs : R.J. Murphy, Auteur ; S. Monteiro, Auteur ; S. Schneider, Auteur Année de publication : 2012 Article en page(s) : pp 3066 - 3080 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Australie occidentale (Australie)
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification Spectral angle mapper
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] mine
[Termes IGN] ombreRésumé : (Auteur) Hyperspectral data acquired from field-based platforms present new challenges for their analysis, particularly for complex vertical surfaces exposed to large changes in the geometry and intensity of illumination. The use of hyperspectral data to map rock types on a vertical mine face is demonstrated, with a view to providing real-time information for automated mining applications. The performance of two classification techniques, namely, spectral angle mapper (SAM) and support vector machines (SVMs), is compared rigorously using a spectral library acquired under various conditions of illumination. SAM and SVM are then applied to a mine face, and results are compared with geological boundaries mapped in the field. Effects of changing conditions of illumination, including shadow, were investigated by applying SAM and SVM to imagery acquired at different times of the day. As expected, classification of the spectral libraries showed that, on average, SVM gave superior results for SAM, although SAM performed better where spectra were acquired under conditions of shadow. In contrast, when applied to hypserspectral imagery of a mine face, SVM did not perform as well as SAM. Shadow, through its impact upon spectral curve shape and albedo, had a profound impact on classification using SAM and SVM. Numéro de notice : A2012-381 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2178419 Date de publication en ligne : 03/02/2012 En ligne : https://doi.org/10.1109/TGRS.2011.2178419 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31827
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 8 (August 2012) . - pp 3066 - 3080[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012081 RAB Revue Centre de documentation En réserve L003 Disponible