Détail de l'auteur
Auteur Mauricio Galo |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
K-means clustering based on omnivariance attribute for building detection from airborne lidar data / Renato César Dos santos in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
[article]
Titre : K-means clustering based on omnivariance attribute for building detection from airborne lidar data Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; A.F. Habib, Auteur Année de publication : 2022 Article en page(s) : pp 111 - 118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] morphologie mathématique
[Termes IGN] semis de pointsRésumé : (auteur) Building detection is an important process in urban applications. In the last decades, 3D point clouds derived from airborne LiDAR have been widely explored. In this paper, we propose a building detection method based on K-means clustering and the omnivariance attribute derived from eigenvalues. The main contributions lie on the automatic detection without the need for training and optimal neighborhood definition for local attribute estimation. Additionally, one refinement step based on mathematical morphology (MM) operators to minimize the classification errors (commission and omission errors) is proposed. The experiments were conducted in three study areas. In general, the results indicated the potential of proposed method, presenting an average Fscore around 97%. Numéro de notice : A2022-431 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-111-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-111-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100737
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 111 - 118[article]The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space / Renato César Dos santos in Applied geomatics, vol 13 n° 4 (December 2021)
[article]
Titre : The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; André C. Carrilho, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 499 - 513 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme de Otsu
[Termes IGN] analyse de groupement
[Termes IGN] Brésil
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] planéité
[Termes IGN] semis de points
[Termes IGN] seuillageRésumé : (auteur) Building change detection techniques are essential for several urban applications. In this context, multi-temporal airborne LiDAR data has been considered an effective alternative since it has some advantages over conventional photogrammetry. Despite several works in the literature, the automatic class definition with great accuracy and performance remains a challenge in change detection. The developed strategies usually explore training samples or empirical thresholds to discriminate the classes. To overcome this limitation, we proposed an automatic building change detection method based on Otsu algorithm and median planarity attribute computed from eigenvalues. The main contribution corresponds to the automatic and unsupervised identification of building changes. The experiments were conducted using airborne LiDAR data from two epochs: 2012 and 2014. From qualitative and quantitative analysis, the robustness of the proposed method in detecting building changes in urban areas was evaluated, presenting completeness and correctness around 99% and 76%, respectively. Numéro de notice : A2021-856 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s12518-021-00371-6 Date de publication en ligne : 24/04/2021 En ligne : https://doi.org/10.1007/s12518-021-00371-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99062
in Applied geomatics > vol 13 n° 4 (December 2021) . - pp 499 - 513[article]Extraction of building roof planes with stratified random sample consensus / André C. Carrilho in Photogrammetric record, vol 33 n° 163 (September 2018)
[article]
Titre : Extraction of building roof planes with stratified random sample consensus Type de document : Article/Communication Auteurs : André C. Carrilho, Auteur ; Mauricio Galo, Auteur Année de publication : 2018 Article en page(s) : pp 363 - 380 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] morphologie mathématique
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] varianceRésumé : (Auteur) This paper describes a consensus‐set estimation for building roof‐plane detection using a stratified random sample consensus (sRANSAC) algorithm applied to point clouds acquired by laser scanning systems. The main idea is to use one initial classification to generate consensus‐set candidates to optimise the sampling mechanism compared to the original RANSAC. The initial classification is performed using mathematical morphology to filter ground returns and estimate local variance information to detect potential planar regions. Thus, the algorithm can prioritise points within planar segments and the number of iterations can be estimated dynamically from available data. The results based on experiments using five different lidar datasets indicate that the proposed method reduces the number of computations for building roof‐plane detection and also improves accuracy compared to RANSAC. Numéro de notice : A2018-620 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12254 Date de publication en ligne : 21/09/2018 En ligne : https://doi.org/10.1111/phor.12254 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92864
in Photogrammetric record > vol 33 n° 163 (September 2018) . - pp 363 - 380[article]The influence of subpixel measurement on digital camera calibration / Mauricio Galo in Revue Française de Photogrammétrie et de Télédétection, n° 198 - 199 (Septembre 2012)
[article]
Titre : The influence of subpixel measurement on digital camera calibration Type de document : Article/Communication Auteurs : Mauricio Galo, Auteur ; Antonio Maria Garcia Tommaselli, Auteur ; J.K. Hasegawa, Auteur Année de publication : 2012 Article en page(s) : pp 62 - 70 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] chambre DTC
[Termes IGN] compensation par moindres carrés
[Termes IGN] élément d'orientation interne
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] extraction automatique
[Termes IGN] image multibande
[Termes IGN] point d'intérêt
[Termes IGN] précision infrapixellaireRésumé : (Auteur) The aim of this work is to evaluate the influence of point measurements in images, with subpixel accuracy, and its contribution in the calibration of digital cameras. Also, the effect of subpixel measurements in 3D coordinates of check points in the object space will be evaluated. With this purpose, an algorithm that allows subpixel accuracy was implemented for semi-automatic determination of points of interest, based on Förstner operator. Experiments were accomplished with a block of images acquired with the multispectral camera DuncanTech MS3100-CIR. The influence of subpixel measurements in the adjustment by Least Square Method (LSM) was evaluated by the comparison of estimated standard deviation of parameters in both situations, with manual measurement (pixel accuracy) and with subpixel estimation. Additionally, the influence of subpixel measurements in the 3D reconstruction was also analyzed. Based on the obtained results, i. e., on the quantification of the standard deviation reduction in the Inner Orientation Parameters (IOP) and also in the relative error of the 3D reconstruction, it was shown that measurements with subpixel accuracy are relevant for some tasks in Photogrammetry, mainly for those in which the metric quality is of great relevance, as Camera Calibration. Numéro de notice : A2012-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.52638/rfpt.2012.73 Date de publication en ligne : 21/04/2014 En ligne : https://doi.org/10.52638/rfpt.2012.73 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31871
in Revue Française de Photogrammétrie et de Télédétection > n° 198 - 199 (Septembre 2012) . - pp 62 - 70[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 012-201203 RAB Revue Centre de documentation En réserve L003 Disponible