Détail de l'auteur
Auteur L. Zhong |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's central valley / L. Zhong in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 8 (August 2012)
[article]
Titre : Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's central valley Type de document : Article/Communication Auteurs : L. Zhong, Auteur ; P. Gong, Auteur ; Gregory S. Biging, Auteur Année de publication : 2012 Article en page(s) : pp 799 - 813 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] carte agricole
[Termes IGN] classification par arbre de décision
[Termes IGN] cultures
[Termes IGN] Enhanced vegetation index
[Termes IGN] évapotranspiration
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image Terra-MODIS
[Termes IGN] phénologie
[Termes IGN] segmentation d'imageRésumé : (Auteur) The overarching goal of this study was to map specific crop types in the Central Valley, California and estimate the effect of classification uncertainty on the calculation of crop evapotranspiration (ETc). A phenology-based classification (PBC) approach was developed to identify crop types based on phenological and spectral metrics derived from the time series of Landsat TM/ETM_ imagery. Phenological metrics, calculated by fitting asymmetric double sigmoid functions to temporal profiles of enhanced vegetation index (EVI), were capable of separating crop types with distinct crop calendars. An innovative method was used to compute spectral metrics to represent crops' spectral characteristics at certain phenological stages instead of any specific imaging date. Crop mapping using these metrics showed a stable performance without influences of low-quality data and inter-annual differences in imaging dates. The requirement for ground reference data by the PBC approach was low because classification algorithms were mostly built according to the knowledge on crop calendars and agricultural practices. Techniques including image segmentation, data fusion with MODIS imagery, and decision tree were incorporated to make the approach effective and efficient. Though moderate accuracy (~65.0 percent) was achieved, ETc calculated by the Food and Agriculture Organization (FAO) 56 method showed that the estimate of water use was not likely to be significantly affected by the classification error in PBC. All these advantages imply the strength of the PBC approach in the regular crop mapping of the Central Valley. Numéro de notice : A2012-428 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.78.8.799 En ligne : https://doi.org/10.14358/PERS.78.8.799 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31874
in Photogrammetric Engineering & Remote Sensing, PERS > vol 78 n° 8 (August 2012) . - pp 799 - 813[article]