Détail de l'auteur
Auteur J. Fowler |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification and reconstruction from random projections for hyperspectral imagery / W. Li in IEEE Transactions on geoscience and remote sensing, vol 51 n° 2 (February 2013)
[article]
Titre : Classification and reconstruction from random projections for hyperspectral imagery Type de document : Article/Communication Auteurs : W. Li, Auteur ; S. Prasad, Auteur ; J. Fowler, Auteur Année de publication : 2013 Article en page(s) : pp 833 - 843 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse en composantes principales
[Termes IGN] classification dirigée
[Termes IGN] classification non dirigée
[Termes IGN] image hyperspectrale
[Termes IGN] reconstruction d'imageRésumé : (Auteur) There is increasing interest in dimensionality reduction through random projections due in part to the emerging paradigm of compressed sensing. It is anticipated that signal acquisition with random projections will decrease signal-sensing costs significantly; moreover, it has been demonstrated that both supervised and unsupervised statistical learning algorithms work reliably within randomly projected subspaces. Capitalizing on this latter development, several class-dependent strategies are proposed for the reconstruction of hyperspectral imagery from random projections. In this approach, each hyperspectral pixel is first classified into one of several pixel groups using either a conventional supervised classifier or an unsupervised clustering algorithm. After the grouping procedure, a suitable reconstruction method, such as compressive projection principal component analysis, is employed independently within each group. Experimental results confirm that such class-dependent reconstruction, which employs statistics pertinent to each class as opposed to the global statistics estimated over the entire data set, results in more accurate reconstructions of hyperspectral pixels from random projections. Numéro de notice : A2013-082 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2204759 En ligne : https://doi.org/10.1109/TGRS.2012.2204759 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32220
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 2 (February 2013) . - pp 833 - 843[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013021 RAB Revue Centre de documentation En réserve L003 Disponible Information fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification / S. Prasad in IEEE Transactions on geoscience and remote sensing, vol 50 n° 9 (October 2012)
[article]
Titre : Information fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification Type de document : Article/Communication Auteurs : S. Prasad, Auteur ; J. Fowler, Auteur ; L. Bruce, Auteur ; W. Li, Auteur Année de publication : 2012 Article en page(s) : pp 3474 - 3486 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] filtrage du bruit
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] méthode robuste
[Termes IGN] partitionnement
[Termes IGN] redondance de données
[Termes IGN] transformation en ondelettesRésumé : (Auteur) Hyperspectral imagery comprises high-dimensional reflectance vectors representing the spectral response over a wide range of wavelengths per pixel in the image. The resulting high-dimensional feature spaces often result in statistically ill-conditioned class-conditional distributions. Conventional methods for alleviating this problem typically employ dimensionality reduction such as linear discriminant analysis along with single-classifier systems, yet these methods are suboptimal and lack noise robustness. In contrast, a divide-and-conquer approach is proposed to address the high dimensionality of hyperspectral data for effective and noise-robust classification. Central to the proposed framework is a redundant wavelet transform for representing the data in a feature space amenable to noise-robust multiscale analysis as well as a multiclassifier and decision-fusion system for classification and target recognition in high-dimensional spaces under small-sample-size conditions. The proposed partitioning of this feature space assigns a collection of all coefficients across all scales at a particular spectral wavelength to a dedicated classifier. It is demonstrated that such a partitioning of the feature space for a multiclassifier system yields superior noise performance for classification tasks. Additionally, validation studies with experimental hyperspectral data show that the proposed system significantly outperforms conventional denoising and classification approaches. Numéro de notice : A2012-451 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2185053 Date de publication en ligne : 06/03/2012 En ligne : https://doi.org/10.1109/TGRS.2012.2185053 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31897
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 9 (October 2012) . - pp 3474 - 3486[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012091 RAB Revue Centre de documentation En réserve L003 Exclu du prêt