IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 49 n° 11 Tome 1Mention de date : November 2011 Paru le : 01/11/2011 ISBN/ISSN/EAN : 0196-2892 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
065-2011111A | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierPixel unmixing in hyperspectral data by means of neural networks / Giorgio Licciardi in IEEE Transactions on geoscience and remote sensing, vol 49 n° 11 Tome 1 (November 2011)
[article]
Titre : Pixel unmixing in hyperspectral data by means of neural networks Type de document : Article/Communication Auteurs : Giorgio Licciardi, Auteur ; F. Del Frate, Auteur Année de publication : 2011 Article en page(s) : pp 4163 - 4172 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse en composantes principales
[Termes IGN] classification par réseau neuronal
[Termes IGN] image AHS
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image PROBA-CHRIS
[Termes IGN] réduction géométrique
[Termes IGN] test de performanceRésumé : (Auteur) Neural networks (NNs) are recognized as very effective techniques when facing complex retrieval tasks in remote sensing. In this paper, the potential of NNs has been applied in solving the unmixing problem in hyperspectral data. In its complete form, the processing scheme uses an NN architecture consisting of two stages: the first stage reduces the dimension of the input vector, while the second stage performs the mapping from the reduced input vector to the abundance percentages. The dimensionality reduction is performed by the so-called autoassociative NNs, which yield a nonlinear principal component analysis of the data. The evaluation of the whole performance is carried out for different sets of experimental data. The first one is provided by the Airborne Hyperspectral Scanner. The second set consists of images from the Compact High-Resolution Imaging Spectrometer on board the Project for On-Board Autonomy satellite, and it includes multiangle and multitemporal acquisitions. The third set is represented by Airborne Visible/InfraRed Imaging Spectrometer measurements. A quantitative performance analysis has been carried out in terms of effectiveness in the dimensionality reduction phase and in terms of the accuracy in the final estimation. The results obtained, when compared with those produced by appropriate benchmark techniques, show the advantages of this approach. Numéro de notice : A2011-445 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2160950 Date de publication en ligne : 01/08/2011 En ligne : https://doi.org/10.1109/TGRS.2011.2160950 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31223
in IEEE Transactions on geoscience and remote sensing > vol 49 n° 11 Tome 1 (November 2011) . - pp 4163 - 4172[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2011111A RAB Revue Centre de documentation En réserve L003 Disponible SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification / F. Mianji in IEEE Transactions on geoscience and remote sensing, vol 49 n° 11 Tome 1 (November 2011)
[article]
Titre : SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification Type de document : Article/Communication Auteurs : F. Mianji, Auteur ; Y. Zhang, Auteur Année de publication : 2011 Article en page(s) : pp 4318 - 4327 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image hyperspectrale
[Termes IGN] signature spectraleRésumé : (Auteur) Need for a priori knowledge of the components comprising each pixel in a scene has set the endmember determination, rather than the endmember abundance quantification, as the primary focus of many unmixing approaches. In the absence of the information about the pure signatures present in an image scene, which is often the case, the mean spectra of the pixel vectors, directly extracted from the scene, are usually used as the pure signatures' spectra. This approach which is mathematically optimized for unmixing problems with a priori known information ignores some statistical properties of the extracted samples and leads to a suboptimal solution for real situations. This paper proposes a novel learning-based unmixing-to-classification conversion model to treat the abundance quantification task as a classification problem. Support vector machine, as an efficient classifier, is used to realize this model. It exploits the statistical nature (endmember spectral variability) of the extracted endmember representatives from the hyperspectral scene, rather than solving the problem according to the ideal model in which only the mean spectra of each training sample set is used. Several experiments are carried out on simulated and real hyperspectral images. The obtained results validate the high performance of the proposed technique in abundance quantification which is a key subpixel information detection capability. Numéro de notice : A2011-446 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2166766 Date de publication en ligne : 06/10/2011 En ligne : https://doi.org/10.1109/TGRS.2011.2166766 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31224
in IEEE Transactions on geoscience and remote sensing > vol 49 n° 11 Tome 1 (November 2011) . - pp 4318 - 4327[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2011111A RAB Revue Centre de documentation En réserve L003 Disponible Intercomparison and validation of techniques for spectral unmixing of hyperspectral images : a planetary case study / X. Ceamanos in IEEE Transactions on geoscience and remote sensing, vol 49 n° 11 Tome 1 (November 2011)
[article]
Titre : Intercomparison and validation of techniques for spectral unmixing of hyperspectral images : a planetary case study Type de document : Article/Communication Auteurs : X. Ceamanos, Auteur ; S. Douté, Auteur ; et al., Auteur Année de publication : 2011 Article en page(s) : pp 4341 - 4358 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] Mars (planète)Résumé : (Auteur) As the volume of hyperspectral data for planetary exploration increases, efficient yet accurate algorithms are decisive for their analysis. In this paper, the capability of spectral unmixing for analyzing hyperspectral images from Mars is investigated. For that purpose, we consider the Russell megadune observed by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the High-Resolution Imaging Science Experiment (HiRISE) instruments. In late winter, this area of Mars is appropriate for testing linear unmixing techniques because of the geographical coexistence of seasonal CO2 ice and defrosting dusty features that is not resolved by CRISM. Linear unmixing is carried out on a selected CRISM image by seven state-of-the-art approaches based on different principles. Three physically coherent sources with an increasing fingerprint of dust are recognized by the majority of the methods. Processing of HiRISE imagery allows the construction of a ground truth in the form of a reference abundance map related to the defrosting features. Validation of abundances estimated by spectral unmixing is carried out in an independent and quantitative manner by comparison with the ground truth. The quality of the results is estimated through the correlation coefficient and average error between the reconstructed and reference abundance maps. Intercomparison of the selected linear unmixing approaches is performed. Global and local comparisons show that misregistration inaccuracies between the HiRISE and CRISM images represent the major source of error. We also conclude that abundance maps provided by three methods out of seven are generally accurate, i.e., sufficient for a planetary interpretation. Numéro de notice : A2011-447 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2140377 Date de publication en ligne : 19/05/2011 En ligne : https://doi.org/10.1109/TGRS.2011.2140377 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31225
in IEEE Transactions on geoscience and remote sensing > vol 49 n° 11 Tome 1 (November 2011) . - pp 4341 - 4358[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2011111A RAB Revue Centre de documentation En réserve L003 Disponible