IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 50 n° 5 Tome 2Mention de date : May 2012 Paru le : 01/05/2012 ISBN/ISSN/EAN : 0196-2892 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
065-2012051B | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierView generation for multiview maximum disagreement based active learning for hyperspectral image classification / W. Di in IEEE Transactions on geoscience and remote sensing, vol 50 n° 5 Tome 2 (May 2012)
[article]
Titre : View generation for multiview maximum disagreement based active learning for hyperspectral image classification Type de document : Article/Communication Auteurs : W. Di, Auteur ; Melba M. Crawford, Auteur Année de publication : 2012 Article en page(s) : pp 1942 - 1954 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification dirigée
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] regroupement de pointsRésumé : (Auteur) Active learning (AL) seeks to interactively construct a smaller training data set that is the most informative and useful for the supervised classification task. Based on the multiview Adaptive Maximum Disagreement AL method, this study investigates the principles and capability of several approaches for the view generation for hyperspectral data classification, including clustering, random selection, and uniform subset slicing methods, which are then incorporated with dynamic view updating and feature space bagging strategies. Tests on Airborne Visible/Infrared Imaging Spectrometer and Hyperion hyperspectral data sets show excellent performance as compared with random sampling and the simple version support vector machine margin sampling, a state-of-the-art AL method. Numéro de notice : A2012-189 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2168566 En ligne : https://doi.org/10.1109/TGRS.2011.2168566 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31636
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 5 Tome 2 (May 2012) . - pp 1942 - 1954[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012051B RAB Revue Centre de documentation En réserve L003 Disponible Evaluation of bayesian despeckling and texture extraction methods based on Gauss–Markov and auto-binomial gibbs random fields: Application to TerraSAR-X data / D. Espinoza Molina in IEEE Transactions on geoscience and remote sensing, vol 50 n° 5 Tome 2 (May 2012)
[article]
Titre : Evaluation of bayesian despeckling and texture extraction methods based on Gauss–Markov and auto-binomial gibbs random fields: Application to TerraSAR-X data Type de document : Article/Communication Auteurs : D. Espinoza Molina, Auteur ; D. Gleich, Auteur ; M. Dactu, Auteur Année de publication : 2012 Article en page(s) : pp 2001 - 2025 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse comparative
[Termes IGN] analyse texturale
[Termes IGN] champ aléatoire de Markov
[Termes IGN] échantillonnage de Gibbs
[Termes IGN] évaluation
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] image TerraSAR-X
[Termes IGN] inférence statistique
[Termes IGN] texture d'imageRésumé : (Auteur) Speckle hinders information in synthetic aperture radar (SAR) images and makes automatic information extraction very difficult. The Bayesian approach allows us to perform the despeckling of an image while preserving its texture and structures. This model-based approach relies on a prior model of the scene. This paper presents an evaluation of two despeckling and texture extraction model-based methods using the two levels of Bayesian inference. The first method uses a Gauss-Markov random field as prior, and the second is based on an auto-binomial model (ABM). Both methods calculate a maximum a posteriori and determine the best model using an evidence maximization algorithm. Our evaluation approach assesses the quality of the image by means of the despeckling and texture extraction qualities. The proposed objective measures are used to quantify the despeckling performances of these methods. The accuracy of modeling and characterization of texture were determined using both supervised and unsupervised classifications, and confusion matrices. Real and simulated SAR data were used during the validation procedure. The results show that both methods enhance the image during the despeckling process. The ABM is superior regarding texture extraction and despeckling for real SAR images. Numéro de notice : A2012-190 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2169679 En ligne : https://doi.org/10.1109/TGRS.2011.2169679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31637
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 5 Tome 2 (May 2012) . - pp 2001 - 2025[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012051B RAB Revue Centre de documentation En réserve L003 Disponible