IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 50 n° 7 Tome 2Mention de date : July 2012 Paru le : 01/07/2012 ISBN/ISSN/EAN : 0196-2892 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
065-2012071B | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierLatent class modeling for site- and non-site-specific classification accuracy assessment without ground data / Giles M. Foody in IEEE Transactions on geoscience and remote sensing, vol 50 n° 7 Tome 2 (July 2012)
[article]
Titre : Latent class modeling for site- and non-site-specific classification accuracy assessment without ground data Type de document : Article/Communication Auteurs : Giles M. Foody, Auteur Année de publication : 2012 Article en page(s) : pp 2827 - 2838 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification automatique
[Termes IGN] estimation de précision
[Termes IGN] modèle de classe latente
[Termes IGN] précision de la classificationRésumé : (Auteur) Accuracy assessment should be a fundamental component of an image classification analysis and is typically undertaken following either a non-site- or a site-specific methodology. The assessment of classification accuracy is, however, often difficult, with many challenges associated with the ground data typically required. Using a series of classifications of two test sites, this paper shows that accuracy assessment from both perspectives is possible through the use of a latent class modeling approach in the absence of ground data. This is possible because the parameters of a latent class model that explains the observed associations in class labeling made by a series of classifications provide estimates of class cover and conditional probabilities of class membership that equate to popular non-site- and site-specific (producer's accuracy) measures of accuracy, respectively. Additionally, the latent class model provides a new classification that could be evaluated by traditional means if ground data are available. The classification of each test site derived from the latent class model was accurate, being of equivalent accuracy to a conventional ensemble classification that was based on the same series of classifications for a site. The ability to derive a highly accurate classification and yield estimates of classification accuracy without ground data to form a testing set indicates the considerable promise of the method and a means to reduce demands for costly ground data that may also be a source of error due to imperfections. Numéro de notice : A2012-321 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2174156 Date de publication en ligne : 19/12/2011 En ligne : https://doi.org/10.1109/TGRS.2011.2174156 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31767
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 7 Tome 2 (July 2012) . - pp 2827 - 2838[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012071B RAB Revue Centre de documentation En réserve L003 Disponible Representative multiple Kernel learning for classification in hyperspectral imagery / Y. Gu in IEEE Transactions on geoscience and remote sensing, vol 50 n° 7 Tome 2 (July 2012)
[article]
Titre : Representative multiple Kernel learning for classification in hyperspectral imagery Type de document : Article/Communication Auteurs : Y. Gu, Auteur ; C. Wang, Auteur ; D. You, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 2852 - 2865 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Recently, multiple kernel learning (MKL) methods have been developed to improve the flexibility of kernel-based learning machine. The MKL methods generally focus on determining key kernels to be preserved and their significance in optimal kernel combination. Unfortunately, computational demand of finding the optimal combination is prohibitive when the number of training samples and kernels increase rapidly, particularly for hyperspectral remote sensing data. In this paper, we address the MKL for classification in hyperspectral images by extracting the most variation from the space spanned by multiple kernels and propose a representative MKL (RMKL) algorithm. The core idea embedded in the algorithm is to determine the kernels to be preserved and their weights according to statistical significance instead of time-consuming search for optimal kernel combination. The noticeable merits of RMKL consist that it greatly reduces the computational load for searching optimal combination of basis kernels and has no limitation from strict selection of basis kernels like most MKL algorithms do; meanwhile, RMKL keeps excellent properties of MKL in terms of both good classification accuracy and interpretability. Experiments are conducted on different real hyperspectral data, and the corresponding experimental results show that RMKL algorithm provides the best performances to date among several the state-of-the-art algorithms while demonstrating satisfactory computational efficiency. Numéro de notice : A2012-322 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2176341 Date de publication en ligne : 17/01/2012 En ligne : https://doi.org/10.1109/TGRS.2011.2176341 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31768
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 7 Tome 2 (July 2012) . - pp 2852 - 2865[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012071B RAB Revue Centre de documentation En réserve L003 Disponible