Détail de l'auteur
Auteur V. Dey |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A supervised and fuzzy-based approach determine optimal multi-resolution image segmentation parameters / H. Tong in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 10 (October 2012)
[article]
Titre : A supervised and fuzzy-based approach determine optimal multi-resolution image segmentation parameters Type de document : Article/Communication Auteurs : H. Tong, Auteur ; T. Maxwell, Auteur ; Y. Zhang, Auteur ; V. Dey, Auteur Année de publication : 2012 Article en page(s) : pp 1029 - 1044 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] classification floue
[Termes IGN] classification hybride
[Termes IGN] classification orientée objet
[Termes IGN] eCognition
[Termes IGN] image optique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] résolution multiple
[Termes IGN] segmentation d'imageRésumé : (Auteur) Image segmentation is important for object-based classification. One of the most advanced image segmentation techniques is multi-resolution segmentation implemented by eCognition®. Multi-resolution segmentation requires users to determine a set of proper segmentation parameters through a trial-and-error process. To achieve accurate segmentations of objects of different sizes, several sets of segmentation parameters are required: one for each level. However, the trial-and-error process is time consuming and operator dependent. To overcome these problems, this paper introduces a supervised and fuzzy-based approach to determine optimal segmentation parameters for eCognition®. This approach is referred to as the Fuzzy-based Segmentation Parameter optimizer (fbsp optimizer) in this paper. It is based on the idea of discrepancy evaluation to control the merging of sub-segments to reach a target segment. Experiments demonstrate that the approach improves the segmentation accuracy by more than 16 percent, reduces the operation time from two hours to one-half hour, and is operator independent. Numéro de notice : A2012-484 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.78.10.1029 En ligne : https://doi.org/10.14358/PERS.78.10.1029 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31930
in Photogrammetric Engineering & Remote Sensing, PERS > vol 78 n° 10 (October 2012) . - pp 1029 - 1044[article]