Détail de l'auteur
Auteur Y. Yu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping nighttime flood from MODIS observations using support vector machines / R. Zhang in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 11 (November 2012)
[article]
Titre : Mapping nighttime flood from MODIS observations using support vector machines Type de document : Article/Communication Auteurs : R. Zhang, Auteur ; D. Sun, Auteur ; Y. Yu, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 1151 - 1161 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] image Terra-MODIS
[Termes IGN] inondation
[Termes IGN] nuit
[Termes IGN] température de luminance
[Termes IGN] zone sinistréeRésumé : (Auteur) This work proposes a nighttime flood mapping method for Moderate Resolution Imaging Spectroradiometer (modis) data. Brightness temperatures at 3.9 um, and BT11 um channels (BT 3.9, and BT 11, respectively) and differences of brightness temperatures between 3.9 um and 4.0 um, and between 11 um and 12 um (BT 3.9-BT 4.0, and BT 11- BT 12, respectively) are used to identify nighttime water pixels by a support vector machines (SVM) classifier. Prominent flood locations are detected by a change detection process using a reference water-land map. To test the effectiveness of the proposed method, two flood cases caused by heavy rains were chosen as trial scenarios. The nighttime mapping results are validated with the flood maps, which are obtained from the visual interpretation based on the daytime flood identification results. The experimental results indicate that the proposed method is effective for the delineation of inundated areas with standing water during the nighttime. Numéro de notice : A2012-583 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.78.11.1151 En ligne : https://doi.org/10.14358/PERS.78.11.1151 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32029
in Photogrammetric Engineering & Remote Sensing, PERS > vol 78 n° 11 (November 2012) . - pp 1151 - 1161[article]