Détail de l'auteur
Auteur H. Pu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Triangular factorization-based simplex algorithms for hyperspectral unmixing / W. Xia in IEEE Transactions on geoscience and remote sensing, vol 50 n° 11 Tome 1 (November 2012)
[article]
Titre : Triangular factorization-based simplex algorithms for hyperspectral unmixing Type de document : Article/Communication Auteurs : W. Xia, Auteur ; H. Pu, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 4420 - 4440 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] algorithme du simplexe
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation
[Termes IGN] image hyperspectrale
[Termes IGN] programmation linéaireRésumé : (Auteur) In the linear unmixing of hyperspectral images, the observation pixels form a simplex whose vertices correspond to the endmembers, hence finding the endmembers is equivalent to extracting these vertices. A common technique for determining vertices is to analyze the simplex volume, but it usually has a high computational complexity, resulting from the exhaustive searching of volume in the large hyperspectral data. This problem limits the practicability and real-time application. In this paper, we utilize triangular factorization (TF) to calculate the volume, deducing a method named simplex volume analysis based on TF (SVATF). It requires just one comparison through the data to succeed in finding the global optimal solution for all the endmembers, thus improving the searching efficiency. Dimensionality reduction transformation is not necessary, which is another advantage of this method. Moreover, since TF is a broad conception including different methods, SVATF is a framework including various implementations. Based on TF, we also propose a fast learning algorithm named abundance quantification based on TF to estimate the abundances, which further saves the computation by utilizing the intermediate values involved in SVATF. The abundance estimation method can rectify possible errors in the given endmembers by utilizing two important constraints (abundance nonnegative constraint and abundance sum-to-one constraint) of the linear mixture model, so it is useful for the imagery without pure pixels. Experimental results on synthetic and real hyperspectral data demonstrate that the proposed methods can obtain accurate results with much lower computational complexity, with respect to other state-of-the-art methods. Numéro de notice : A2012-587 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2195185 Date de publication en ligne : 22/05/2012 En ligne : https://doi.org/10.1109/TGRS.2012.2195185 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32033
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 11 Tome 1 (November 2012) . - pp 4420 - 4440[article]