Détail de l'auteur
Auteur K. Singh |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy / K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 74 (Novembrer 2012)
[article]
Titre : LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy Type de document : Article/Communication Auteurs : K. Singh, Auteur ; J. Volger, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 110 - 121 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] classification par arbre de décision
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] conflation
[Termes IGN] données lidar
[Termes IGN] données massives
[Termes IGN] image Landsat-TM
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] pouvoir de résolution géométriqueRésumé : (Auteur) The structural characteristics of Light Detection and Ranging (LiDAR) data are increasingly used to classify urban environments at fine scales, but have been underutilized for distinguishing heterogeneous land covers over large urban regions due to high cost, limited spectral information, and the computational difficulties posed by inherently large data volumes. Here we explore tradeoffs between potential gains in mapping accuracy with computational costs by integrating structural and intensity surface models extracted from LiDAR data with Landsat Thematic Mapper (TM) imagery and evaluating the degree to which TM, LiDAR, and LiDAR-TM fusion data discriminated land covers in the rapidly urbanizing region of Charlotte, North Carolina, USA. Using supervised maximum likelihood (ML) and classification tree (CT) methods, we classified TM data at 30 m and LiDAR data and LiDAR-TM fusions at 1 m, 5 m, 10 m, 15 m and 30 m resolutions. We assessed the relative contributions of LiDAR structural and intensity surface models to classification map accuracy and identified optimal spatial resolution of LiDAR surface models for large-area assessments of urban land cover. ML classification of 1 m LiDAR-TM fusions using both structural and intensity surface models increased total accuracy by 32% compared to LiDAR alone and by 8% over TM at 30 m. Fusion data using all LiDAR surface models improved class discrimination of spectrally similar forest, farmland, and managed clearings and produced the highest total accuracies at 1 m, 5 m, and 10 m resolutions (87.2%, 86.3% and 85.4%, respectively). At all resolutions of fusion data and using either ML or CT classifier, the relative contribution of the LiDAR structural surface models (canopy height and normalized digital surface model) to classification accuracy is greater than the intensity surface. Our evaluation of tradeoffs between data volume and thematic map accuracy for this study system suggests that a spatial resolution of 5 m for LiDAR surface models best balances classification performance and the computational challenges posed by large-area assessments of land cover. Numéro de notice : A2012-607 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2012.09.009 En ligne : https://doi.org/10.1016/j.isprsjprs.2012.09.009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32053
in ISPRS Journal of photogrammetry and remote sensing > vol 74 (Novembrer 2012) . - pp 110 - 121[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2012081 SL Revue Centre de documentation Revues en salle Disponible