Détail de l'auteur
Auteur Sandra Bujan |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
PpC: a new method to reduce the density of lidar data. Does it affect the DEM accuracy? / Sandra Bujan in Photogrammetric record, vol 34 n° 167 (September 2019)
[article]
Titre : PpC: a new method to reduce the density of lidar data. Does it affect the DEM accuracy? Type de document : Article/Communication Auteurs : Sandra Bujan, Auteur ; Edouardo M. González‐Ferreiro, Auteur ; Miguel Cordero, Auteur ; David Miranda, Auteur Année de publication : 2019 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] modèle numérique de surface
[Termes IGN] pente
[Termes IGN] précision
[Termes IGN] R (langage)
[Termes IGN] réductionRésumé : (auteur) In cost–benefit analysis of lidar data acquisition, point density is often artificially reduced in order to examine how this affects the quality of derived products. However, the performance of the different density reduction methods has not yet been compared and their influence on the accuracy of the models and results has not been evaluated. A novel method for reducing the point density, termed Proportional per Cell (PpC), is presented and compared with the performance of three other reduction methods, examining their influence on the accuracy of lidar‐derived digital surface models using ISPRS reference data. The results indicate that the PpC method was better at conserving the characteristics of the original data. However, point density, sample type and slope had a greater influence than the reduction method used. Numéro de notice : A2019-499 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12295 Date de publication en ligne : 10/10/2019 En ligne : https://doi.org/10.1111/phor.12295 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93763
in Photogrammetric record > vol 34 n° 167 (September 2019) . - pp[article]Large scale semi-automatic detection of forest roads from low density LiDAR data on steep terrain in Northern Spain / Convadonga Prendes in iForest, biogeosciences and forestry, vol 12 n° 4 (July 2019)
[article]
Titre : Large scale semi-automatic detection of forest roads from low density LiDAR data on steep terrain in Northern Spain Type de document : Article/Communication Auteurs : Convadonga Prendes, Auteur ; Sandra Bujan, Auteur ; Celestino Ordóñez, Auteur ; Elena Canga, Auteur Année de publication : 2019 Article en page(s) : pp 366 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] axe médian
[Termes IGN] chemin forestier
[Termes IGN] classification pixellaire
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Espagne
[Termes IGN] montagneRésumé : (auteur) While forest roads are important to forest managers in terms of facilitating the exploitation of wood and timber, their role is far more multifunctional. They permit access to emergency services in the case of forest fires as well as acting as fire breaks, enhance biodiversity, and provide access to the public to enjoy recreational activities. Detailed maps of forest roads are an essential tool for better and more timely forest management and automatic/semi-automatic tools allow not only the creation of forest road databases, but also enable these to be updated. In Spain, LiDAR data for the entire national territory is freely available, and the capture of higher density data is planned in the next few years. As such, the development of a forest road detection methodology based on LiDAR data would allow maps of all forest roads to be developed and regularly updated. The general objective of this work was to establish a low density LiDAR data-based methodology for the semi-automatic detection of the centerline of forest roads on steep terrain with various types of canopy cover. Intensity and slope images were generated using the currently available LiDAR data of the study area (0.5 points m-2). Two image classification approaches were evaluated: pixel-based and object-oriented classification (OBIA). The LiDAR-derived centerlines obtained with the two approaches were compared with the real centerlines which had previously been digitized in the field. The road width, type of surface and type of vegetation cover were also recorded. The effectiveness of the two approaches was evaluated through three quality indicators: correctness, completeness and quality. In addition, the accuracy of the LiDAR-derived centerlines was also evaluated by combining GIS analysis and statistical methods. The pixel-based approach obtained higher values than OBIA for two of the three quality measures (correctness: 93% compared to 90%; and quality: 60% compared to 56%) as well as in terms of positional accuracy (± 5.5 m vs. ± 6.8 for OBIA). The results obtained in this study demonstrate that producing road maps is among the most valuable and easily attainable products of LiDAR data analysis. Numéro de notice : A2019-659 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3832/ifor2989-012 Date de publication en ligne : 05/07/2019 En ligne : https://doi.org/10.3832/ifor2989-012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98528
in iForest, biogeosciences and forestry > vol 12 n° 4 (July 2019) . - pp 366 - 374[article]Land use classification from lidar data and ortho-images in a rural area / Sandra Bujan in Photogrammetric record, vol 27 n° 140 (December 2012 - February 2013)
[article]
Titre : Land use classification from lidar data and ortho-images in a rural area Type de document : Article/Communication Auteurs : Sandra Bujan, Auteur ; Edouardo M. González‐Ferreiro, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 401 - 422 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] classification orientée objet
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] image aérienne
[Termes IGN] occupation du sol
[Termes IGN] paysage rural
[Termes IGN] précision des données
[Termes IGN] superposition de donnéesRésumé : (Auteur) Obtaining information on the distribution of rural landscape types is an active research topic within Spanish rural studies. This paper presents a new hierarchical object-based classification method for the automatic detection of various land use classes in a rural area, combining lidar data and aerial images. In view of the upcoming availability of low-density lidar data (0·5 pulses/m2) for most of the territory of Spain, this paper assesses the feasibility and accuracy of the proposed method for various lidar data densities. Such an assessment was conducted using two approaches: firstly, based on the final classification, which produced an overall accuracy over 96% and a kappa index above 0·95 for the combinations of the aerial image and lidar data-sets with four different densities; and secondly, based solely on the areas classified as buildings. In the second approach, the accuracy of the classification for building detection at pixel and object level was assessed. The object-oriented classification of buildings produced an index of correctness of over 99% and an index of completeness of about 95%. The results reveal a high agreement between classification and ground truth data. Numéro de notice : A2012-624 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/j.1477-9730.2012.00698.x Date de publication en ligne : 18/12/2012 En ligne : https://doi.org/10.1111/j.1477-9730.2012.00698.x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32070
in Photogrammetric record > vol 27 n° 140 (December 2012 - February 2013) . - pp 401 - 422[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 106-2012041 RAB Revue Centre de documentation En réserve L003 Disponible